国产精品视频一区二区三区四,亚洲av美洲av综合av,99国内精品久久久久久久,欧美电影一区二区三区电影

搜全站
   聯(lián)系電話

   400-828-1550

筱曉(上海)光子技術(shù)有限公司

5
  • 2025

    07-25

    【原創(chuàng)】激光鎖頻實(shí)驗(yàn)——將780nm DFB鎖定于Rb飽和吸收峰

    您好,可以免費(fèi)咨詢技術(shù)客服[Daisy]筱曉(上海)光子技術(shù)有限公司歡迎大家給我們留言,私信我們會(huì)詳細(xì)解答,分享產(chǎn)品鏈接給您。免責(zé)聲明:資訊內(nèi)容來(lái)源于互聯(lián)網(wǎng),目的在于傳遞信息,提供專業(yè)服務(wù),不代表本網(wǎng)站及新媒體平臺(tái)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé)。如對(duì)文、圖等版權(quán)問(wèn)題存在異議的,請(qǐng)聯(lián)系我們將協(xié)調(diào)給予刪除處理。行業(yè)資訊僅供參考,不存在競(jìng)爭(zhēng)的經(jīng)濟(jì)利益。
  • 2025

    07-25

    脈沖光纖激光器的工作原理來(lái)了解下!

    脈沖光纖激光器是一種利用光纖作為增益介質(zhì)的小型化光學(xué)激光器,具有輸出功率高、脈沖寬度窄、光束質(zhì)量好、可靠性高等特點(diǎn)。脈沖光纖激光器的基本結(jié)構(gòu)包括泵浦源、增益光纖、諧振腔(或種子源)、調(diào)制器等關(guān)鍵部件,其工作原理基于“受激輻射”和“脈沖調(diào)制技術(shù)”:泵浦過(guò)程:泵浦源(多為高功率半導(dǎo)體激光器)發(fā)出的泵浦光(通過(guò)光纖耦合器注入增益光纖,使增益介質(zhì)中的粒子從基態(tài)躍遷至高能級(jí),形成粒子數(shù)反轉(zhuǎn)。脈沖產(chǎn)生:通過(guò)調(diào)制器或調(diào)Q、鎖模等技術(shù),控制激光的輸出時(shí)間,形成脈沖激光。調(diào)Q技術(shù):通過(guò)改變諧振腔的損耗,積累高能級(jí)
  • 2025

    07-24

    “先進(jìn)中紅外激光技術(shù)與應(yīng)用”專題亮點(diǎn)文章

    背景介紹中紅外氟化物光纖超短脈沖激光在半導(dǎo)體材料加工、超連續(xù)泵浦、多光子顯微鏡、強(qiáng)場(chǎng)物理等方向有著廣闊的應(yīng)用前景,成為近年來(lái)激光技術(shù)發(fā)展的重要前沿方向之一。現(xiàn)有中紅外展寬和壓縮體光柵傳輸損耗極大,且中紅外光纖光柵技術(shù)不成熟,因此近紅外通用的光纖啁啾脈沖放大技術(shù)難于移植到中紅外波段,這限制了中紅外氟化物光纖峰值功率的提升。提升中紅外氟化物光纖的輸出峰值功率以滿足應(yīng)用需求,是國(guó)際上多個(gè)研究團(tuán)隊(duì)追求的目標(biāo)。上海交通大學(xué)謝國(guó)強(qiáng)教授課題組報(bào)道了一種能夠?qū)崿F(xiàn)高峰值功率的2.8μmEr:ZBLAN光纖自壓縮放
  • 2025

    07-23

    級(jí)聯(lián)泵浦高功率摻鐿光纖激光器:進(jìn)展與展望

    高功率摻鐿光纖激光器具有轉(zhuǎn)換效率高、輸出亮度高、結(jié)構(gòu)緊湊靈活、熱管理簡(jiǎn)單、系統(tǒng)穩(wěn)定可靠等優(yōu)勢(shì),已成為眾多高功率激光系統(tǒng)優(yōu)選光源之一,在工業(yè)、醫(yī)療、科研、**等方面獲得了越來(lái)越廣泛的應(yīng)用。高功率光纖激光器技術(shù)是當(dāng)今世界科技強(qiáng)國(guó)競(jìng)相發(fā)展的重要技術(shù)之一,而其泵浦方案更是高功率光纖激光領(lǐng)域重要的研究熱點(diǎn)。目前泵浦方案分為直接泵浦(directpumping)和級(jí)聯(lián)泵浦(tandempumping)兩類。級(jí)聯(lián)泵浦指用激光泵浦激光,即激光在光光轉(zhuǎn)化過(guò)程中的多次級(jí)聯(lián)(圖1)。直接泵浦則指整個(gè)系統(tǒng)僅有一次主要的
  • 2025

    07-22

    超越自然—超快激光制備功能化微納二級(jí)結(jié)構(gòu)

    超快激光加工是靈活制備微納米結(jié)構(gòu)的可靠手段,但衍射極限制了其納米結(jié)構(gòu)的制備能力,且制備效率低下。針對(duì)以上問(wèn)題,清華大學(xué)材料學(xué)院鐘敏霖教授課題組開(kāi)展了十多年的系統(tǒng)研究,發(fā)展了一系列超快激光微納結(jié)構(gòu)制備與雙級(jí)精確調(diào)控新方法,探索了超快激光制備的微納結(jié)構(gòu)表面在超疏水、高抗反、高敏感性和生醫(yī)檢測(cè)等領(lǐng)域的創(chuàng)新應(yīng)用。本文以四個(gè)領(lǐng)域的部分研究工作為代表,旨在與本領(lǐng)域同仁交流探討,共同推進(jìn)本研究領(lǐng)域的發(fā)展。關(guān)鍵技術(shù)進(jìn)展1、超快激光制備可控微納結(jié)構(gòu)與特殊浸潤(rùn)性研究超親水、超疏水、超雙疏和超滑表面等特殊浸潤(rùn)性表面都
  • 2025

    07-21

    光噪聲的過(guò)濾器——窄帶矩形光學(xué)濾波器

    基于光柵局域溫度控制的高精度光學(xué)濾波器的基本原理及應(yīng)用場(chǎng)景。包含噪聲的多制式光學(xué)載波信號(hào)通過(guò)低損耗通信光纖進(jìn)行遠(yuǎn)距離信息傳輸,通過(guò)在光纖光柵內(nèi)引入多個(gè)局域可控相移形成由性能可重構(gòu)的矩形光學(xué)濾波響應(yīng),實(shí)現(xiàn)對(duì)光學(xué)信號(hào)噪聲的濾除和信息的高保真?zhèn)鬏?。圖中以不同顏色的光束表示多制式的光學(xué)載波信息;圖中的波形表示傳輸?shù)男畔?,其中信?hào)之間的藍(lán)色雜亂波形表示存在的噪聲;整個(gè)圓形管道代表光信號(hào)傳輸?shù)耐ǖ?中間多個(gè)圓片代表了光纖局域相移點(diǎn)的引入,組成了本文描述的高精度光學(xué)濾波器。研究背景光纖布拉格光柵(FBG)由于
  • 2025

    07-18

    微納之間出新意——基于微納光電子學(xué)的新型光電子芯片

    微納光電子學(xué)研究微納結(jié)構(gòu)中物質(zhì)與光波/光子的相互作用,為光電子技術(shù)的創(chuàng)新發(fā)展提供了新的物理機(jī)制和實(shí)現(xiàn)手段。光與物質(zhì)之間的相互作用本質(zhì)上可以理解為各種基本粒子和準(zhǔn)粒子之間的相互作用,微納結(jié)構(gòu)可以操控聲子、表面等離基元等準(zhǔn)粒子的特性及其與光子、電子的相互作用,這種操控作用帶來(lái)的新物理促進(jìn)了新功能光電子芯片的出現(xiàn)。微納結(jié)構(gòu)突破傳統(tǒng)光電子芯片基于束縛電子和光場(chǎng)相互作用的框架,使得自由電子也成為了光電子芯片的新角色。通過(guò)納米結(jié)構(gòu)或超材料,可以實(shí)現(xiàn)芯片上飛行電子、晶體中束縛電子、光子三者相互作用的新機(jī)制,為
  • 2025

    07-17

    更快看清世界—并行焦斑熒光輻射差分超分辨顯微成像

    共聚焦顯微鏡是生物學(xué)、生命科學(xué)等領(lǐng)域中觀察細(xì)胞尺度的結(jié)構(gòu)的重要儀器。通過(guò)與樣品面共軛的針孔對(duì)離焦雜散光的限制,共聚焦顯微鏡可以實(shí)現(xiàn)接近由衍射成像系統(tǒng)孔徑導(dǎo)致的阿貝衍射極限分辨率的成像。共聚焦顯微成像是一般生物細(xì)胞學(xué)研究的常用工具,一般共聚焦成像系統(tǒng)的分辨率在半波長(zhǎng)左右。然而目前的共聚焦顯微鏡在分辨率上仍不足以支持對(duì)細(xì)胞器、蛋白質(zhì)等更小尺度的樣品的觀察。因此,研究人員在共聚焦顯微系統(tǒng)的分辨率提升問(wèn)題上投入了大量的研究,基于共聚焦顯微系統(tǒng)的超分辨顯微方法也應(yīng)運(yùn)而生。熒光輻射差分超分辨顯微方法(FED
  • 2025

    07-16

    納米超緊湊型外腔集成可調(diào)諧激光器組件(Nano-ITLA)

    筱曉(上海)光子技術(shù)有限公司(以下簡(jiǎn)稱“筱曉”)開(kāi)發(fā)新的超級(jí)C波段和L波段應(yīng)用,擴(kuò)展了其用于光數(shù)字相干通信的激光光源產(chǎn)品--超小型窄線寬波長(zhǎng)可調(diào)光源(Nano-ITLA)的產(chǎn)品陣容,從而擴(kuò)展了傳統(tǒng)C波段的帶寬。產(chǎn)品原理結(jié)構(gòu)為了應(yīng)對(duì)通信流量的增長(zhǎng),采用光數(shù)字相干方式的超高速傳輸系統(tǒng)正在被引入。未來(lái)預(yù)計(jì)將引入后5G時(shí)代服務(wù),這將需要比5G更大的數(shù)據(jù)量,因此提高中長(zhǎng)距離光通信網(wǎng)絡(luò)的傳輸容量至關(guān)重要。然而,隨著速度的提升,每個(gè)信道所需的帶寬將從傳統(tǒng)的50GHz間隔增加,而可傳輸信道的數(shù)量則會(huì)減少,因此正
  • 2025

    07-15

    如何讓飛秒激光加工的微雕塑“活”起來(lái)?

    近年來(lái),智能執(zhí)行器件取得了突破性的進(jìn)展。與由剛性材料構(gòu)成的傳統(tǒng)執(zhí)行器件相比,智能軟體執(zhí)行器憑借其柔軟和自適應(yīng)性強(qiáng)的材料組分以及可根據(jù)外部刺激響應(yīng)來(lái)自發(fā)完成運(yùn)動(dòng)的特性,在生物醫(yī)學(xué)工程,光學(xué)系統(tǒng),微機(jī)械系統(tǒng),化學(xué)分析等領(lǐng)域擁有無(wú)限廣闊的前景。而隨著人們對(duì)小型化、便攜化和智能化產(chǎn)品的需求日益增大,微納加工技術(shù)與新型材料的研究也取得了長(zhǎng)足進(jìn)步。其中飛秒激光雙光子聚合直寫具有高自由度可編程設(shè)計(jì)能力、強(qiáng)大的三維處理能力和高空間分辨率等優(yōu)點(diǎn),在三維微納器件制造方面有著極大優(yōu)勢(shì)。與此同時(shí),如何利用生物相容性材料
  • 2025

    07-14

    單光子激光雷達(dá):動(dòng)目標(biāo)高精度測(cè)距測(cè)速跟蹤之眼

    光子計(jì)數(shù)激光雷達(dá)的工作原理。安裝在跟蹤平臺(tái)上的光子計(jì)數(shù)激光雷達(dá)可實(shí)現(xiàn)對(duì)遠(yuǎn)距離高速非合作運(yùn)動(dòng)目標(biāo)的高精度測(cè)距和測(cè)速。采用單光子探測(cè)器的激光雷達(dá)能夠探測(cè)單個(gè)光子,具有高的探測(cè)靈敏度。在其激光回波點(diǎn)云中,大量的噪聲光子在時(shí)域上呈隨機(jī)分布,而目標(biāo)的回波光子具有一定的連續(xù)性和關(guān)聯(lián)性,通過(guò)多次激光回波累加或者相關(guān)算法處理點(diǎn)云數(shù)據(jù)可以提取出目標(biāo)的運(yùn)動(dòng)軌跡,從而獲得動(dòng)目標(biāo)的距離和速度信息。激光測(cè)距雷達(dá)主要采用飛行時(shí)間原理實(shí)現(xiàn)目標(biāo)測(cè)距,具有測(cè)距精度高、作用距離遠(yuǎn)、測(cè)距速率高等特點(diǎn),已廣泛應(yīng)用于遠(yuǎn)距離測(cè)距、三維成像
  • 2025

    07-11

    利用激光器、調(diào)制器、探測(cè)器實(shí)現(xiàn)芯片和光纖等高速互連通信

    集成多維光互連和光處理的主要內(nèi)容,其主要利用激光器、調(diào)制器、探測(cè)器、波長(zhǎng)/偏振/模式處理器(微環(huán)、陣列波導(dǎo)光柵、偏振轉(zhuǎn)換器、模式復(fù)用器)、光開(kāi)關(guān)陣列等器件及其集成,提供芯片級(jí)多維光互連和光處理的解決方案。片上集成光互連和光處理利用光作為載波進(jìn)行數(shù)據(jù)傳輸和信號(hào)處理,從而實(shí)現(xiàn)芯片和光纖等高速互連通信。結(jié)合光波的頻率、偏振、時(shí)間、復(fù)振幅及空間結(jié)構(gòu)等物理維度資源進(jìn)行多維復(fù)用,可以進(jìn)一步增大互連通信系統(tǒng)的容量。同時(shí),片上集成光處理也呈現(xiàn)出高速大容量、多維度、多功能、可調(diào)諧、可重構(gòu)及靈活智能化等趨勢(shì)。為突破
  • 2025

    07-10

    小體積,高性能—集成型近紅外單光子探測(cè)器助力激光雷達(dá)應(yīng)用

    研究背景在遠(yuǎn)距離高性能激光雷達(dá)應(yīng)用中,目標(biāo)的回波光信號(hào)往往十分微弱。使用單光子探測(cè)器可大大降低激光器的功率要求,大幅提高有效探測(cè)距離。而在航天器、無(wú)人機(jī)等平臺(tái)上使用的激光雷達(dá)除要求探測(cè)距離遠(yuǎn)外,還需要體積小、重量輕、功耗低。因此,需要通過(guò)集成化、模塊化的設(shè)計(jì)方法,在保證探測(cè)器高性能的前提下降低探測(cè)器的體積和功耗,以滿足條件苛刻的系統(tǒng)應(yīng)用需求,提高其在系統(tǒng)應(yīng)用中的便利性和可靠性。創(chuàng)新研究課題組通過(guò)對(duì)探測(cè)器進(jìn)行多方面的設(shè)計(jì)優(yōu)化,實(shí)現(xiàn)了高性能、小體積、低功耗的目標(biāo)。首先,課題組設(shè)計(jì)了元件數(shù)少、結(jié)構(gòu)緊湊
  • 2025

    07-09

    利用氰化氫氣體池對(duì)DFB激光器進(jìn)行波長(zhǎng)校準(zhǔn)

    在本文中,我們介紹利用WavelengthReferences公司的光纖耦合氣體池對(duì)窄線寬DFB激光器進(jìn)行波長(zhǎng)校準(zhǔn)的方法。該氣體池內(nèi)裝有壓強(qiáng)為20Torr的碳13氰化氫(H13CN),吸收光程為5.5cm。下圖為美國(guó)國(guó)家標(biāo)準(zhǔn)與技術(shù)研究院(NIST)測(cè)得的HCN氣體池(吸收光程15cm,壓強(qiáng)25Torr)的透射光譜[1]:每條吸收線的波長(zhǎng)對(duì)環(huán)境條件不敏感,且其數(shù)值已被精確測(cè)定。例如,P2譜線中心的波長(zhǎng)為1543.80967(18)nm[1]。光纖耦合氣體池的核心功能光纖耦合氣體池通過(guò)光纖傳輸光信號(hào)
  • 2025

    07-08

    三維鈮酸鋰非線性光子晶體的實(shí)現(xiàn)

    2018年,祝世寧團(tuán)隊(duì)采用飛秒激光直寫方法制備了一種三維LNNPC結(jié)構(gòu),通過(guò)優(yōu)化激光參數(shù)有選擇性地擦除LN晶體的非線性系數(shù)。其物理機(jī)制可以理解為:通過(guò)激光照射降低結(jié)晶度,這已在加工區(qū)域內(nèi)所測(cè)量的透射電子顯微鏡(TEM)衍射圖和微拉曼信號(hào)中得到了證實(shí)。非線性相互作用波在周期性極化的LN晶體中即可以通過(guò)反向鐵電疇進(jìn)行相位調(diào)制,也可以在激光加工的LN晶體中進(jìn)行空間幅度調(diào)制。在理想情況下,加工區(qū)域中會(huì)形成非晶結(jié)構(gòu),這可以將非線性系數(shù)減小為零。當(dāng)非線性系數(shù)被周期性地擦除時(shí),二次諧波場(chǎng)在第一個(gè)相干長(zhǎng)度Lc中
  • 2025

    07-07

    微結(jié)構(gòu)激光器的新助手——PT對(duì)稱、超對(duì)稱

    激光器是一種高亮度、高效率和高相干性的能量轉(zhuǎn)換器件,特別是在半導(dǎo)體激光器系統(tǒng)中,不僅存在折射率的高低分布,而且還同時(shí)存在增益和損耗分布,是一個(gè)天然的非厄米光學(xué)系統(tǒng)。通過(guò)引入人工微結(jié)構(gòu)來(lái)調(diào)控激光器的折射率和增益損耗分布,在基于半導(dǎo)體激光芯片的光學(xué)平臺(tái)上可實(shí)現(xiàn)宇稱時(shí)間對(duì)稱(PT對(duì)稱)、超對(duì)稱(SUSY)等物理效應(yīng)。其中,宇稱時(shí)間對(duì)稱有望改善激光器的光譜、近場(chǎng)和遠(yuǎn)場(chǎng)分布,而超對(duì)稱有望實(shí)現(xiàn)單側(cè)模大功率的輸出。這些物理效應(yīng)的引入為激光器中模式調(diào)控提供了新思路,有利于降低傳統(tǒng)半導(dǎo)體激光器的模式調(diào)控手段所需要
  • 2025

    07-04

    一文讀懂十種 | 氣體感知技術(shù)方式

    在萬(wàn)物互聯(lián)的社會(huì),氣體感知技術(shù)已成為各領(lǐng)域發(fā)展的“隱形衛(wèi)士”。消費(fèi)場(chǎng)景中,守護(hù)家居空氣質(zhì)量;汽車領(lǐng)域,助力尾氣優(yōu)化與安全監(jiān)測(cè);工業(yè)生產(chǎn)時(shí),保障流程穩(wěn)定、預(yù)防災(zāi)害;醫(yī)療場(chǎng)景下,精準(zhǔn)檢測(cè)呼吸氣體輔助診斷;環(huán)境監(jiān)測(cè)中,實(shí)時(shí)捕捉污染物守護(hù)生態(tài)。從日常生活到宏觀生產(chǎn),氣體感知技術(shù)以敏銳“嗅覺(jué)”,推動(dòng)各行業(yè)向智能化、安全化邁進(jìn)。下面介紹10種常見(jiàn)的氣體感知方式。PID光離子化氣體傳感器PID(PhotoionizationDetector,光離子化檢測(cè)器)的核心原理是利用紫外光(UV)照射氣體分子,使其電離
  • 2025

    07-03

    Furukawa窄線寬可調(diào)諧激光器:相干光通信的核心技術(shù)突破與演進(jìn)

    引言:光通信時(shí)代的光源革命隨著數(shù)據(jù)流量的指數(shù)級(jí)增長(zhǎng),數(shù)字相干光通信技術(shù)正從長(zhǎng)距離干線傳輸向短距離城域網(wǎng)、數(shù)據(jù)中心互聯(lián)(DCI)等場(chǎng)景滲透。作為相干通信系統(tǒng)的“心臟”,可調(diào)諧激光器需同時(shí)滿足波長(zhǎng)覆蓋擴(kuò)展、線寬壓縮、尺寸功耗微型化等多重挑戰(zhàn)。古河電工集團(tuán)通過(guò)半導(dǎo)體集成技術(shù)與外腔結(jié)構(gòu)創(chuàng)新,開(kāi)發(fā)出系列窄譜線寬集成可調(diào)諧激光器組件(ITLA),為400G/800G及下一代超高速光網(wǎng)絡(luò)提供了核心技術(shù)支撐。一、技術(shù)需求與理論基礎(chǔ):從性能指標(biāo)到物理本質(zhì)1.1可調(diào)諧激光器的核心性能參數(shù)-波長(zhǎng)調(diào)諧范圍:傳統(tǒng)C波段(
  • 2025

    07-02

    百赫茲大能量中短波雙波長(zhǎng)光參量振蕩器

    百赫茲大能量中短波雙波長(zhǎng)光參量振蕩器1.5μm和3~5μm波段的激光均位于大氣近紅外窗口,對(duì)空氣(包括戰(zhàn)場(chǎng)硝煙,尤其是以、白磷為主的煙霧)的穿透性很強(qiáng),在激光干擾、激光雷達(dá)和**方面具有很高的應(yīng)用價(jià)值。非線性晶體KTiOAsO4(KTA)具有高損傷閾值、大非線性系數(shù)等優(yōu)點(diǎn),因此KTA-OPO在輸出大能量中短波激光方面?zhèn)涫芮嗖A。但較大能量的中短波激光器重復(fù)頻率大多低于100Hz,達(dá)到100Hz、百毫焦量級(jí)的激光輸出報(bào)道較少。為了在百赫茲重復(fù)頻率下獲得大能量的中短波KTA-OPO激光系統(tǒng),山東大學(xué)信
  • 2025

    07-01

    相干多普勒激光雷達(dá)?是一種新興的主動(dòng)遙感探測(cè)儀器!

    大氣湍流是大氣中的一種重要運(yùn)動(dòng)形式,由各種尺度的渦旋疊加而形成不規(guī)則運(yùn)動(dòng),堪稱大氣環(huán)境的“攪拌器”。大氣中的湍流運(yùn)動(dòng)無(wú)時(shí)、無(wú)處不在,看不見(jiàn)摸不著,卻嚴(yán)重影響大氣中動(dòng)量、熱量、污染物等的交換,又對(duì)聲波、光波及其它電磁波的傳播產(chǎn)生影響。大氣邊界層內(nèi)的湍流運(yùn)動(dòng)包括了由垂直風(fēng)切變形成的機(jī)械湍流和對(duì)流產(chǎn)生的湍流,對(duì)氣象和空氣質(zhì)量起著重要作用。解析大氣邊界層湍流特征,有利于深入了解地-氣系統(tǒng)的能量交換、污染物輸送和擴(kuò)散以及各種氣象要素,為我國(guó)大氣污染治理打開(kāi)一扇“觀察窗”。相干多普勒激光雷達(dá)是一種新興的主動(dòng)
12345共19頁(yè)367條記錄
三门峡市| 盐源县| 六枝特区| 灵川县| 潞西市| 博湖县| 昭平县| 南皮县| 深水埗区| 玉溪市| 铜鼓县| 岫岩| 大洼县| 区。| 武城县| 都兰县| 睢宁县| 南乐县| 西昌市| 拉孜县| 琼结县| 镇安县| 赞皇县| 怀宁县| 平邑县| 方城县| 芜湖县| 密山市| 瓮安县| 丰都县| 上饶市| 和平区| 玉溪市| 平阴县| 克拉玛依市| 邳州市| 福泉市| 平乡县| 玉林市| 巴林右旗| 潜江市|