国产精品视频一区二区三区四,亚洲av美洲av综合av,99国内精品久久久久久久,欧美电影一区二区三区电影

您好, 歡迎來到化工儀器網(wǎng)

| 注冊| 產(chǎn)品展廳| 收藏該商鋪

13810233784

technology

首頁   >>   技術文章   >>   CCD相機和EMCCD中的光學標準具效應

先鋒科技(香港)股份有限...

立即詢價

您提交后,專屬客服將第一時間為您服務

CCD相機和EMCCD中的光學標準具效應

閱讀:4876      發(fā)布時間:2018-4-18
分享:

評價一臺CCDEMCCD相機級別高低或質(zhì)量優(yōu)劣的一個重要指標是信噪比(SNR)。科學客觀的信噪比定義為:

其中,QECCD芯片的量子效率,N**為各種噪聲,P為信號入射到像素上的光子通量,GEMCCD的放大倍率(對CCD而言,G=1),F為噪聲因子。由上式可以清楚看到,信噪比若想獲得提升,不僅要盡量降低各種噪聲,更要努力提高芯片的量子效率。

量子效率主要由芯片的光敏硅層吸收光電子的能力所決定,而這層光敏層,亦稱擴散區(qū)。僅在該區(qū)域中,光子轉(zhuǎn)化成電子-空穴對,并由電場禁錮在像素中,然后電荷再依序被讀出。

光子可以進入光敏硅層的深度與入射光的波長有關。波長越短,光子進入的行程越短;波長越長,進入的行程越長。前者更靠近硅層表面,吸收深度越??;而后者可以進入硅層較深的內(nèi)部,吸收深度越大。但波長大于1.1μm的光子,無力創(chuàng)造出一對電子-空穴對,所以不能被硅基CCD芯片所探測。因此,對任何波長大于此的入射光而言,硅基CCD此時均是“透明”的。

下圖為入射光波長與吸收深度的關系,可以非常容易地得出如上的結論。

從吸收光子的結構方式來講,CCD芯片分前感光芯片和背感光芯片兩類。前者的典型結構如下圖所示:

可見入射光子必須先穿越電結構,才能到達光敏層;在部分入射光子通量到達光敏層之前,又不可避免地被電結構所吸收和反射。在此種結構下,可以被轉(zhuǎn)化成電子-空穴對的光子,其波長下限值大約在350nm,波長更短的光子,由于其對應的吸收區(qū)只能存在于光敏層表面,而不能產(chǎn)生電子-空穴對。即便在可見光區(qū),由于入射光通量的結構性損失,QE也僅僅可以達到大約50%。

背感光芯片采取了翻轉(zhuǎn)式工作模式,其光敏層經(jīng)過特定工藝處理后,直接接收入射的光子。其典型結構如下圖所示:

更厚的光敏層為波長更長的光子提供了更大更長的吸收路徑,從而提升了芯片在相對較長波長區(qū)間的量子效率。背感光芯片通常由于在全波段具有更高的量子效率而在弱信號測量和近紅外測量領域中得到廣泛應用。

但與背感光芯片提供較高量子效率伴生的一個不利效應,就是其在特定波長范圍內(nèi)產(chǎn)生的光學標準具效應。背感光芯片前后兩個彼此平行的表面,構成了類F-B干涉儀的兩個鏡片,在滿足兩個表面間距與入射相干光波長匹配條件的情況下,對特定波長范圍內(nèi)的光,形成了干涉條紋。這種干涉條紋,對本真的待測信號,可以施加高達40%的有害周期調(diào)制因子,嚴重削弱了數(shù)據(jù)的可信性,給科研工作者的工作,帶來了大的負面影響。

F-B干涉儀的基本原理,如下圖所示:

背感光CCD芯片基于光學標準具效應所產(chǎn)生的典型干涉條紋如下圖所示:

如此嚴重的調(diào)制影響,到底是否可以*消除?若不能,怎樣才能zui大限度地降低其負面作用?我們將在下篇中予以說明,敬請關注。

會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

您的留言已提交成功!我們將在第一時間回復您~
在線留言
天柱县| 祁连县| 桓台县| 万源市| 浮梁县| 名山县| 吴川市| 武定县| 武山县| 稷山县| 北辰区| 吉木萨尔县| 南通市| 毕节市| 湖口县| 永修县| 玉林市| 乐都县| 且末县| 天祝| 永年县| 栾川县| 麻城市| 迭部县| 金川县| 汉源县| 上高县| 彭泽县| 栖霞市| 天气| 年辖:市辖区| 葵青区| 成武县| 逊克县| 杭锦旗| 什邡市| 宁河县| 德兴市| 阆中市| 万全县| 新干县|