国产精品视频一区二区三区四,亚洲av美洲av综合av,99国内精品久久久久久久,欧美电影一区二区三区电影

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國(guó)布魯克海文儀器公司>技術(shù)文章>Spontaneous Imbibition Investigation of Self-Dispersing Silica Nanofluids for Enhanced Oil Recovery

技術(shù)文章

Spontaneous Imbibition Investigation of Self-Dispersing Silica Nanofluids for Enhanced Oil Recovery

閱讀:491          發(fā)布時(shí)間:2017-12-22
 作者 Caili Dai*, Xinke Wang, Yuyang Li, Wenjiao Lv, Chenwei Zou, Mingwei Gao, and Mingwei Zhao*

State Key Laboratory of Heavy Oil Processing, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People’s Republic of China

 

摘要:A new kind of self-dispersing silica nanoparticle was prepared and used to enhance oil recovery in spontaneous imbibition tests of low-permeability cores. To avoid the aggregation of silica nanoparticles, a new kind of silica nanoparticle was prepared through the surface modification with vinyltriethoxysilane and 2-mercaptobenzimidazole as modified agents. Transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and ζ potential measurements were employed to characterize the modified silica nanoparticles. Dispersing experiments indicated that modified silica nanoparticles had superior dispersity and stability in alkaline water. To evaluate the performance of silica nanofluids for enhanced oil recovery compared to pH 10 alkaline water and 5 wt % NaCl solution, spontaneous imbibition tests in sandstone cores were conducted. The results indicated that silica nanofluids can evidently improve oil recovery. To investigate the mechanism of nanoparticles for enhanced oil recovery, the contact angle and interfacial tension were measured. The results showed that the adsorption of silica nanoparticles can change the surface wettability from oil-wet to water-wet and silica nanoparticles showed a little influence on oil/water interfacial tension. In addition, the change of the oil droplet shape on the hydrophobic surface was monitored through dynamic contact angle measurement. It was shown that silica nanoparticles can gradually detach the oil droplet from the hydrophobic surface, which is consistent with the structural disjoining pressure mechanism.

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話(huà) 二維碼 在線交流

掃一掃訪問(wèn)手機(jī)商鋪
010-62081908
在線留言
通城县| 鹰潭市| 美姑县| 高阳县| 新乡市| 临沂市| 和林格尔县| 义马市| 莲花县| 奇台县| 炉霍县| 壶关县| 惠来县| 乌什县| 慈溪市| 梁平县| 石林| 常山县| 兴宁市| 开远市| 宿州市| 宽城| 新竹市| 延庆县| 昆山市| 旌德县| 鄢陵县| 龙山县| 卢氏县| 鄱阳县| 邳州市| 北京市| 津南区| 定结县| 贵溪市| 宣武区| 黄梅县| 彩票| 天全县| 青龙| 瓦房店市|