国产精品视频一区二区三区四,亚洲av美洲av综合av,99国内精品久久久久久久,欧美电影一区二区三区电影

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊

當(dāng)前位置:
美國布魯克海文儀器公司>技術(shù)文章>Silk–ionomer and silk–tropoelastin hydrogels as charged three-dimensional culture platforms for the

技術(shù)文章

Silk–ionomer and silk–tropoelastin hydrogels as charged three-dimensional culture platforms for the

閱讀:391          發(fā)布時間:2016-7-20

作者 Rossella Calabrese1, Nicole Raia1, Wenwen Huang1, Chiara E. Ghezzi1, Marc Simon2, Cristian Staii2, Anthony S. Weiss3,4,5 andDavid L. Kaplan1

1Department of Biomedical Engineering, Tufts University Science and Technology Center, Medford, MA, USA

2Department of Physics and Astronomy, and Center for Nanoscopic Physics, Tufts University Science and Technology Center, Medford, MA, USA

3School of Molecular Bioscience, University of Sydney, NSW, Australia

4Charles Perkins Center, University of Sydney, NSW, Australia

5Bosch Institute, University of Sydney, NSW, Australia

 

摘要:The response of human bone marrow-derived mesenchymal stem cells (hMSCs) encapsulated in three-dimensional (3D) charged protein hydrogels was studied. Combining silk fibroin (S) with recombinant human tropoelastin (E) or silk ionomers (I) provided protein composite alloys with tunable physicochemical and biological features for regulating the bioactivity of encapsulated hMSCs. The effects of the biomaterial charges on hMSC viability, proliferation and chondrogenic or osteogenic differentiation were assessed. The silk–tropoelastin or silk–ionomers hydrogels supported hMSC viability, proliferation and differentiation. Gene expression of markers for chondrogenesis and osteogenesis, as well as biochemical and histological analysis, showed that hydrogels with different S/E and S/I ratios had different effects on cell fate. The negatively charged hydrogels upregulated hMSC chondrogenesis or osteogenesis, with or without specific differentiation media, and hydrogels with higher tropoelastin content inhibited the differentiation potential even in the presence of the differentiation media. The results provide insight on charge-tunable features of protein-based biomaterials to control hMSC differentiation in 3D hydrogels, as well as providing a new set of hydrogels for the compatible encapsulation and utility for cell functions. Copyright © 2016 John Wiley & Sons, Ltd.

 

關(guān)鍵詞:tropoelastin;silk;hydrogels;stem cells;differentiation;tissue engineering

 

 

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復(fù)您~

對比框

產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
邵东县| 健康| 沾化县| 凤翔县| 霍州市| 聂荣县| 昭平县| 兴和县| 江孜县| 涞水县| 三穗县| 海城市| 博兴县| 宝兴县| 石家庄市| 中山市| 扎囊县| 榆社县| 尤溪县| 永川市| 岱山县| 商城县| 柳州市| 微山县| 信宜市| 沅陵县| 鸡东县| 晋州市| 札达县| 安徽省| 方山县| 蓬溪县| 榆林市| 方正县| 清水县| 全椒县| 宝兴县| 承德县| 太仆寺旗| 雅安市| 阿瓦提县|