国产精品视频一区二区三区四,亚洲av美洲av综合av,99国内精品久久久久久久,欧美电影一区二区三区电影

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國(guó)布魯克海文儀器公司>資料下載>測(cè)量應(yīng)用案例-20200702

資料下載

測(cè)量應(yīng)用案例-20200702

閱讀:162          發(fā)布時(shí)間:2020-7-6
提 供 商 美國(guó)布魯克海文儀器公司 資料大小 3.1MB
資料圖片 下載次數(shù) 17次
資料類(lèi)型 PDF 文件 瀏覽次數(shù) 162次
免費(fèi)下載 點(diǎn)擊下載    
 文獻(xiàn)名: The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate

 

作者 Afshin Malekia, Farzaneh Moradia, Behzad Shahmoradia, Reza Rezaeea, Seung-Mok Leeb

a    Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

b    Department of Environmental Engineering, Catholic Kwandong University, Ganeung, 25601, South Korea

 

摘要:Diazinon is an important organophosphorus pesticide with extensive use, which is considered to be a major health hazard for humans due to its adverse effects on cholinesterase activity and central nervous system. The entry of diazinon into water resources affects a wide range of non-target organisms, which highlights the importance of its removal from water resources. The present study aimed to synthesize and use WO3 doped ZnO nanocatalyst to degrade diazinon. Zinc oxide nanoparticles were synthesized using the hydrothermal method and doped with 0.5%, 1%, and 2% M tungsten oxide. Moreover, the effects of dopant percentage, pH, the initial concentration of diazinon, nanoparticle dosage, and contact time were investigated. The results of EDS revealed that W was doped into ZnO structure. The maximum diazinon degradation (99%) was obtained using 10 mg/cm−2 2% WO3 doped ZnO, 10?mg/l diazinon, neutral pH value and contact time of 180?min. Removal efficiency was decreased by increasing pH and initial diazinon concentration. The experimental kinetic data followed the pseudo-first order model. The reaction rate constant (kobs) was decreased from 0.0205 to 0.0034 1/min with increasing initial diazinon concentration from 10 to 200?mg/L, respectively. The figures of merit based on electric energy consumption (EEO) indicate that less energy is consumed during the degradation of diazinon in the presence of 2% WO3 doped ZnO compared with other photocatalysts. Therefore, it could be concluded that 2%WO3 doped ZnO is a promising material for photocatalytic degradation of diazinon with high efficiency under optimal condition.

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話(huà) 二維碼 在線交流

掃一掃訪問(wèn)手機(jī)商鋪
010-62081908
在線留言
麟游县| 永平县| 年辖:市辖区| 资中县| 剑川县| 石屏县| 华亭县| 基隆市| 南溪县| 汕头市| 和平区| 湄潭县| 乾安县| 云梦县| 前郭尔| 安吉县| 蒙山县| 嵩明县| 密云县| 临邑县| 株洲市| 津南区| 鸡东县| 洪泽县| 黑山县| 西乌珠穆沁旗| 郎溪县| 闽清县| 金湖县| 五常市| 沙田区| 梓潼县| 德化县| 新巴尔虎左旗| 清徐县| 乐都县| 双流县| 锦州市| 阆中市| 阜平县| 黄冈市|