国产精品视频一区二区三区四,亚洲av美洲av综合av,99国内精品久久久久久久,欧美电影一区二区三区电影

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測定儀|樣品前處理|試驗機|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>其他文章>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

基于多人工神經(jīng)網(wǎng)絡(luò)自適應(yīng)選擇和城市河流高光譜圖像的水質(zhì)參數(shù)制圖

來源:江蘇雙利合譜科技有限公司   2023年05月18日 15:20  

題目

基于多人工神經(jīng)網(wǎng)絡(luò)自適應(yīng)選擇和城市河流高光譜圖像的水質(zhì)參數(shù)制圖

 

應(yīng)用關(guān)鍵詞

自適應(yīng)、深度學(xué)習(xí)、多神經(jīng)網(wǎng)絡(luò)、高光譜圖像、水質(zhì)監(jiān)測

 

背景

水質(zhì)參數(shù)主要包括磷、氮、生化需氧量(Biochemical oxygen demand, BOD)、化學(xué)需氧量(Chemical oxygen demand, COD)、葉綠素a。水質(zhì)參數(shù)的異常會影響水生生物生存以及產(chǎn)生水污染,因此需要一種快速、高效的計算方法對水體污染物進行定量預(yù)測。

隨著計算機科學(xué)和遙感技術(shù)的迅速發(fā)展,高光譜遙感圖像分析已被廣泛應(yīng)用于大氣、土壤和水的參數(shù)預(yù)測。目前,利用高光譜進行水質(zhì)估測的研究中,大多將其看成分類問題而不是回歸問題,并且研究中構(gòu)建的模型較難適應(yīng)水質(zhì)的突然變化。同時,傳統(tǒng)的特征選擇過程是低效的,并且只能預(yù)測一個水質(zhì)參數(shù)。

為解決上述問題,本研究提出了多神經(jīng)網(wǎng)絡(luò)自適應(yīng)選擇方法(Self-adapting selection of multiple neural networks, SSNN),它是一種集相關(guān)和逐步回溯為一體的端到端方法,可以在不同設(shè)置下選擇最佳模型,并能定量預(yù)測6個水質(zhì)參數(shù)。在本研究中,使用數(shù)學(xué)和統(tǒng)計檢驗標準支持所提出模型的可靠性。本研究利用地面分析光譜儀(ASD)采集的水體的修正光譜反射率,建立了基于遙感數(shù)據(jù)的自適應(yīng)人工神經(jīng)網(wǎng)絡(luò)(ANN),對水體氮、磷、BOD、COD、濁度和Chla進行預(yù)測。

 

試驗設(shè)計

試驗地點位于廣東省中山市的石岐河。北京大學(xué)劉瑜教授團隊利用ASD(325 nm ~ 1075 nm)采集地下水地表光譜反射率,共獲得79個點的地面測量數(shù)據(jù)。每個采樣點獲取其水體氮、磷、BOD、COD、濁度和Chla數(shù)據(jù)。本研究使用的無人機為大疆M600,高光譜成像儀為Gaiasky-mini2-VN(江蘇雙利合譜),其波長范圍為401.81 nm ~ 999.28 nm,在120米高的天空中飛行,空間分辨率為40 cm。

ASD和高光譜成像儀的波段值不同,前者的波段范圍覆蓋后者的波段范圍。根據(jù)測量輻射度的協(xié)議和輻射度-反射率傳遞法獲得ASD反射率后,我們將ASD的波長投影到高光譜成像儀上,使其具有相同的中心和波段數(shù)。然后,通過特征工程,在404.0 nm ~ 894.3 nm范圍內(nèi)選取145個特征波段。UAV高光譜圖像數(shù)據(jù)每個像元點包含的270個波段的反射率數(shù)據(jù)可以轉(zhuǎn)移145個特征波段。由于未對圖像進行大氣校正,我們選擇地面點來消除ASD與高光譜成像儀反射率的差異。

1顯示了用于估計水質(zhì)參數(shù)的方法。首先,地面樣本包含ASD反射率數(shù)據(jù)和水質(zhì)參數(shù)兩部分,用于建立SSNN模型。其次,利用非線性反射率傳遞模型中的UAV高光譜圖像數(shù)據(jù)作為輸入,通過將UAV的反射率傳遞到ASD來細化數(shù)據(jù)。第三,傳遞的UAV反射率數(shù)據(jù)被用于SSNN模型,從而對水質(zhì)參數(shù)進行定量估計,并利用ArcGIS軟件包生成專題圖。

本文提出的SSNN模型主要由神經(jīng)網(wǎng)絡(luò)、線性回歸和反饋機三部分組成(圖2)。ANN傳統(tǒng)的數(shù)值預(yù)測ANN,包括特征選擇、逐步回溯和權(quán)重相關(guān)性。線性回歸被設(shè)計用于調(diào)整最終結(jié)果。反饋機用于SSNN模型的自適應(yīng),更新神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)置,如隱藏層數(shù)、激活函數(shù)和每個隱藏層的神經(jīng)元數(shù)。

SSNN的訓(xùn)練數(shù)據(jù)包括每個點的水面反射率和所有污染物的含量水平。該方法通過對所有ANN - BP進行比較,篩選出最you的反演模型。在SSNN模型中進行反向傳播、逐步回溯、Pearson相關(guān)和余弦相關(guān)。根據(jù)均方根誤差(RMSE)、F統(tǒng)計量、t統(tǒng)計量和R平方值,使用具有不同隱層數(shù)、隱層節(jié)點數(shù)、優(yōu)化器和激活函數(shù)的各種神經(jīng)網(wǎng)絡(luò)來選擇其中的最佳神經(jīng)網(wǎng)絡(luò)。

圖片1.png

 

1 用于水質(zhì)參數(shù)的多神經(jīng)網(wǎng)絡(luò)自適應(yīng)選擇法(SSNN)的工作流程

2 SSNN模型結(jié)構(gòu)


結(jié)論

1展示了不同路線的水質(zhì)參數(shù)。D1的渾濁度、Chla、BOD、COD和氮在各樣地中最高,因為水樣采集于養(yǎng)魚池。有機物導(dǎo)致高濃度的BOD、COD和氮。由于缺乏良好的出水口和進水口,水池濁度高度集中,造成水池濁度迅速增加。其他路線的水質(zhì)參數(shù)濃度較低,這是因為存在水交換,生活廢物較少。

1 研究區(qū)79個訓(xùn)練數(shù)據(jù)組成的不同路線水質(zhì)參數(shù)的范圍和平均值

 

3展示了迭代次數(shù)從100到1000次過程中,每100次迭代的精度變化,以及所選ANN-BP模型精度優(yōu)于其他4個模型。所選模型在隱層數(shù)、隱層節(jié)點數(shù)、優(yōu)化器的選擇、激活函數(shù)的選擇等方面與其他四個模型不同。從圖3a-c可以看出,在100 ~ 400次迭代下,所選ANN-BP模型的性能并沒有優(yōu)于其他4個ANN-BP模型,但逐漸優(yōu)于其余模型。經(jīng)過600次迭代,圖3a-c獲得相對穩(wěn)定的精度,模型達到平衡。

 

3 不同水質(zhì)參數(shù)和訓(xùn)練迭代的精度圖

2給出了所選ANN-BP模型的評價標準以及t統(tǒng)計量對應(yīng)的p值。濁度和Chla有最大的RMSE,因為濁度和Chla在單位的量級和范圍上都大于其他值。F檢驗零假設(shè)表明,模型2并不比模型1更能顯著擬合數(shù)據(jù)。一個好的ANN-BP模型通常會給出一個較大的F統(tǒng)計量,并且所有模型之間只對一種水質(zhì)參數(shù)進行比較。表2中的P值都大于0.05,表明在95%的置信水平下,接受無效假設(shè),對于其中一個水質(zhì)參數(shù)而言,模型產(chǎn)生的平均值等于真實模型的分布。R2值均大于0.5,表明超過50%的方差可以被自變量解釋。

2 SSNN方法中有關(guān)水質(zhì)的參數(shù)


3列出了不同方法在整個區(qū)域測試集上的性能,包括SSNN、傳統(tǒng)單層神經(jīng)網(wǎng)絡(luò)和Liew等人的經(jīng)驗方法。本研究所提出方法在RMSE和MPAE方面優(yōu)于其他方法。SSNN對氮的估算效果最jia(MPAE最di)。MPAE比RMSE更有說服力,因為它有效地證明了所提出方法的數(shù)值預(yù)測的準確性。后期需要在整個區(qū)域內(nèi)收集更多的數(shù)據(jù),以確保對各項水質(zhì)參數(shù)進行準確的數(shù)值預(yù)測。氮的R2值比其他的R2值大,而一些R2值高的水質(zhì)參數(shù)由于隨機樣本量小,其MPAE可能并不低。本研究所提出的方法對大多數(shù)水質(zhì)參數(shù)的預(yù)測是正確的,盡管樣本沒有覆蓋整個區(qū)域上所有間隔40厘米的像素點。

3 不同模式的統(tǒng)計參數(shù)比較

 

如前所述,將地面ASD反射率和水質(zhì)參數(shù)作為SSNN模型的輸入,建立訓(xùn)練模型,然后將UAV高光譜反射率圖像作為SSNN模型的輸入,預(yù)測水質(zhì)參數(shù)。圖4顯示了在480、550和670 nm三個波長下估計水質(zhì)參數(shù)的結(jié)果圖像。各個水質(zhì)參數(shù)的分布可以很容易地觀察到,當(dāng)?shù)丨h(huán)保部門可以追蹤各個水質(zhì)參數(shù)含量水平隨時間的分布和變化情況,以確定污染源。雖然圖4只顯示了整個研究區(qū)域的一部分,但其結(jié)果具有代表性。結(jié)果表明,人們居住的地方或生產(chǎn)皮革和塑料的工廠大多被高濁度、COD、BOD和磷污染。特征波長可以定量和定性地解釋水質(zhì)參數(shù)的變化。

 

4 SSNN在水質(zhì)參數(shù)反演中的應(yīng)用

 

作者信息

劉瑜,博士,北京大學(xué)地球與空間科學(xué)學(xué)院教授,博士生導(dǎo)師。

主要研究方向:基于時空大數(shù)據(jù)的人文社會科學(xué)研究。

參考文獻:

Zhang, Y., Wu, L., Ren, H., Liu, Y., Zheng, Y., Liu, Y., & Dong, J. (2020). Mapping Water Quality Parameters in Urban Rivers from Hyperspectral Images Using a New Self-Adapting Selection of Multiple Artificial Neural Networks. Remote Sensing, 12(2).



免責(zé)聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責(zé)任。
  • 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618
丽水市| 高阳县| 郯城县| 平南县| 辽宁省| 衢州市| 奉化市| 凉山| 水城县| 资阳市| 乐山市| 隆回县| 上高县| 北流市| 新乐市| 斗六市| 云梦县| 新龙县| 磴口县| 嘉义市| 长岭县| 封丘县| 军事| 高碑店市| 堆龙德庆县| 桂东县| 双峰县| 长宁县| 富裕县| 方山县| 嫩江县| 星子县| 壤塘县| 开江县| 金门县| 万年县| 车险| 马关县| 大悟县| 伊金霍洛旗| 明光市|