国产精品视频一区二区三区四,亚洲av美洲av综合av,99国内精品久久久久久久,欧美电影一区二区三区电影

產品推薦:氣相|液相|光譜|質譜|電化學|元素分析|水分測定儀|樣品前處理|試驗機|培養(yǎng)箱


化工儀器網(wǎng)>技術中心>其他文章>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

利用高光譜成像和化學計量學無損檢測水稻水分和脂肪酸含量

來源:江蘇雙利合譜科技有限公司   2023年09月18日 09:12  

背景

水分含量(Moisture content, MC)和脂肪酸含量(Fatty acid content, FAC)是大米品質的重要指標,影響大米的存儲和食用品質。因此,建立一種快速、準確、無損的MCFAC檢測方法至關重要。

可見/近紅外光譜可以響應樣品中的某些含氫基團,從而獲得樣品中的內部化學信息。該技術已被用于檢測農產品中的水分和脂肪酸含量。同時,與可見光/近紅外光譜相比,高光譜成像(Hyperspectral imaging, HSI)技術具有光譜與圖像相結合的優(yōu)勢。利用每個像素點的光譜預測水稻的MCFAC,形成水稻的MCFAC的可視化分布,使檢測結果更加直觀。但是,HSI技術也存在數(shù)據(jù)量大、實時性差等缺點,難以在實際中應用。然而,這些問題可以通過數(shù)據(jù)降維和特征波長選擇來解決。

本研究的目的是結合HSI技術與化學計量學方法,建立一種快速簡便的水稻MCFAC檢測方法。(1)采用不同的預處理方法對大米和精米的光譜進行預處理,建立了MCFAC的全波段預測模型。最后根據(jù)模型性能確定最佳預處理方法。(2)采用兩種變量選擇方法篩選大米和精米在900~1700 nm區(qū)域的MCFAC的顯著波長。(3)比較了MCFAC模型在大米和精米中的性能,并分析了稻殼對MCFAC模型性能的影響。(4)利用最佳模型預測每個像素點的MCFAC,實現(xiàn)水稻樣品MCFAC的可視化。

 

試驗設計

浙江農林大學孫通副教授團隊利用GaiaField-N17E高光譜成像系統(tǒng)(江蘇雙利合譜)獲取了13個水稻品種的大米和精米高光譜影像(圖1)。近紅外高光譜成像儀的光譜范圍為900~1700 nm,空間分辨率為640像素,波段數(shù)為512,光譜分辨率為5 nm。對獲得的高光譜影像利用OTSU方法獲取其前景像素,并計算大米和精米平均光譜。

預處理可以去除高頻隨機噪聲和基線漂移等噪聲,提高模型性能。本研究采用了5種預處理方法,包括多元散射校正(MSC)、標準正態(tài)變量變換(SNV)、Savitzky-GolaySG)平滑、SG+一階導數(shù)和SG導數(shù)。根據(jù)全波段模型的性能,選擇最合適的預處理方法。為提高計算速度,減少數(shù)據(jù)冗余,本研究采用競爭自適應重加權采樣(CARS)和連續(xù)投影算法(SPA)選擇大米/精米中MCFAC的顯著波長。

 

1高光譜成像系統(tǒng)

 

結論

大米和精米在900~1700 nm波長范圍內的原始反射光譜如圖2所示。從圖2可以看出,大米和精米的光譜在900~1400 nm波長范圍內具有相同的趨勢。然而,大米的反射光譜逐漸增加,而精米的反射光譜在1400~1700 nm波長范圍內趨于穩(wěn)定。此外,大米光譜的反射率值普遍高于精米。這可能是由于大米和精米的顏色、光滑度和透明度不同造成的。在960、12001450 nm處有三個明顯的峰。960 nm左右的峰值可能是由水和碳水化合物中O-H二階泛音的協(xié)同作用引起的。1200 nm左右的峰值與樣品的MC有關,1450 nm左右的峰值歸因于O-H拉伸第一泛音。

 

2 大米(a)和精米(b)樣品的原始光譜

采用5種預處理方法對大米和精米樣品的光譜進行處理,利用PLSR算法建立MCFAC的估測模型。由表1可知,在大米-水分模型中,SNVSG-2預處理效果更好。采用SNV預處理建立的模型R2較高,達到0.9682。但該模型不穩(wěn)定,魯棒性較差。因此,SG-2模型的性能優(yōu)于SNV模型。在大米-脂肪酸模型中,SG-2是最佳的預處理方法。對于精米-水分模型,SG-2預處理的R2較高。綜上所述,在大米-水分、精米-水分大米-脂肪酸”3種預測模型中,SG-2是最佳的預處理方法。而在精米-脂肪酸模型中,SG平滑是好的預處理方法,模型的R2pRMSEP分別為0.84271.7806。

從表1可以看出,大米中MC的模型性能優(yōu)于精米。這是因為稻殼含有水分,其吸水能力高于精米。因此,當大米樣品經過水處理后,稻殼比精米吸收更多的水分。因此,大米光譜中含有的水分信息比精米光譜中含有的水分信息更多。相比之下,精米中FAC的模型性能優(yōu)于大米。稻殼主要由纖維素、半纖維素、木質素等成分組成,其中不含脂肪酸。稻殼中存在的干擾信息會影響建模過程中脂肪酸的預測。因此,得到的光譜信息可能會受到谷殼的干擾,導致精米的預測精度降低。

1 不同預處理方法下樣品中水分和脂肪酸的PLS模型預測結果

 

由于采用SGSG-2預處理的MCFAC模型效果好,因此對這些光譜進行了CARSSPA特征優(yōu)選。由表2可以看出,相較于CARS,SPA選擇更少的重要波長,使實際應用更容易,同時SPA模型的RPD值較高,模型精度較高。此外,SPA模型的性能優(yōu)于全波段模型,這表明SPA選擇的波長幾乎包含了MCFAC的所有有效信息。與全波段模型的結果相似,SPA模型對大米中MC的預測精度高于精米,而對大米中FAC的預測精度低于精米。大米-水分、精米-水分、大米-脂肪酸的最佳模型為“SG2-SPA-PLS”,精米-脂肪酸的最佳模型為“SG-SPA-PLS”

SPA選擇的波長如表3所示。MC模型選擇的964.17、965.74、975.16、978.291373.751395.72 nm波長與水分波長相似,歸功于O-H拉伸的第一、第二和第三泛音。對于FAC模型,選擇的1095.99、1387.871516.56 nm波長歸功于C-H的一、二泛音和-CH2基團的拉伸,選取的939.06964.17967.31 nm波長主要來自于O-H鍵的彎曲振動。

2 使用選定波長的樣品中水分和脂肪酸的PLS模型預測結果

 

3 SPA選擇的波長

 

通過Fearn1996)提出的方法驗證稻殼對MCFAC預測精度的影響。在95%置信水平下計算區(qū)間是否包含0。如果它包含0,則偏差在5%的水平上沒有顯著差異。由表4可知,大米和精米中MC的預測誤差計算區(qū)間均為0,而FAC的不為0。這表明大米與精米中FAC的預測誤差存在顯著差異,因此稻殼對FAC的預測精度有一定的影響。

4 大米和精米的水分和脂肪酸含量在95%置信水平上存在顯著差異

 

3為不同水分梯度下水稻樣品MC的可視化結果。可以看出,水稻樣本的MC越高,可視化圖像中的紅色區(qū)域越大,而水稻樣本的MC越低,可視化圖像中的藍色區(qū)域越大。這與大米樣本的實際MC一致,說明MC模型對每個像素的MC預測是準確的。此外,可視化圖像中大米樣品的MC分布不均勻,這可能是由于樣品處理過程中吸濕不均勻造成的。圖4為大米樣品FAC可視化結果。FAC模型可以準確預測每個像素的FAC??梢暬梢灾庇^地反映水稻中MCFAC的空間變化,可以在像元水平上了解MCFAC的分布情況。因此,在儲存前檢驗和儲存監(jiān)測中,可以在很小的范圍內檢測到異常的MCFAC,從而保證了大米的質量安全。

 

3 大米含水量可視化圖

 

4 大米脂肪酸含量可視化圖

 

作者信息

孫通,博士,浙江農林大學光機電工程學院副教授,碩士生導師。

主要研究方向:農林產品光譜智能檢測技術研究及裝備開發(fā)。

參考文獻:

Song, Y., Cao, S., Chu, X., Zhou, Y., Xu, Y., Sun, T., Zhou, G., & Liu, X. (2023). Non-Destructive Detection of Moisture and Fatty Acid Content in Rice using Hyperspectral Imaging and Chemometrics. Journal of Food Composition and Analysis, 11.

 

免責聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,未經本網(wǎng)授權不得轉載、摘編或利用其它方式使用上述作品。已經本網(wǎng)授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。
  • 本網(wǎng)轉載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任。
  • 如涉及作品內容、版權等問題,請在作品發(fā)表之日起一周內與本網(wǎng)聯(lián)系,否則視為放棄相關權利。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618
从化市| 厦门市| 曲水县| 宁阳县| 桂东县| 新建县| 象山县| 镇巴县| 防城港市| 林口县| 屏山县| 化德县| 黄梅县| 敦煌市| 克什克腾旗| 横峰县| 宁明县| 巴马| 西贡区| 吉林省| 阜平县| 二连浩特市| 旺苍县| 灵山县| 清远市| 潍坊市| 芜湖县| 满城县| 洛隆县| 原阳县| 锡林郭勒盟| 司法| 墨竹工卡县| 自治县| 分宜县| 馆陶县| 武平县| 梁河县| 偏关县| 修文县| 时尚|