国产精品视频一区二区三区四,亚洲av美洲av综合av,99国内精品久久久久久久,欧美电影一区二区三区电影

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測定儀|樣品前處理|試驗機|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>解決方案>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

面向新型電力系統(tǒng)的光儲充一體化方案研究基于智能負荷預(yù)測算法

來源:江蘇安科瑞電器制造有限公司   2025年08月15日 15:31  

安科瑞 劉邁

摘要:在新型電力系統(tǒng)穩(wěn)步發(fā)展與“雙碳”目標持續(xù)構(gòu)筑背景下,“源荷互動新模式”成為電力系統(tǒng)能源轉(zhuǎn)型的必然趨勢,以多樣性、靈活性為主要特征的電力負荷作為電力系統(tǒng)的重要組成部分,其預(yù)測場景分析及預(yù)測模型研究對新型電力系統(tǒng)的運行、維護和規(guī)劃至關(guān)重要。為深入研究人工智能背景下負荷預(yù)測領(lǐng)域取得的進展與突破,以新型電力系統(tǒng)負荷預(yù)測為著眼點,總結(jié)歸納當今負荷預(yù)測必要性與實用性,分類介紹五個典型負荷預(yù)測場景,針對基于人工智能技術(shù)的智能負荷預(yù)測算法模型進行系統(tǒng)化分析,結(jié)合機器學(xué)習(xí)中的神經(jīng)網(wǎng)絡(luò)、深度學(xué)習(xí)算法、集成學(xué)習(xí)算法對比單一預(yù)測模型及組合預(yù)測模型的特點,詳細闡述各類模型在負荷預(yù)測領(lǐng)域的應(yīng)用現(xiàn)狀,以期為“雙碳”目標下新型電力系統(tǒng)源荷互動的新模式構(gòu)建提供合理化參考。

關(guān)鍵詞:無新型電力系統(tǒng);人工智能;神經(jīng)網(wǎng)絡(luò);負荷預(yù)測;機器學(xué)習(xí);深度學(xué)習(xí)

0引言

隨著“雙碳”進程的不斷深入推進,我國能源電力高質(zhì)量發(fā)展面臨新形式和新任務(wù)。電力系統(tǒng)作為能源系統(tǒng)的重要組成部分及“雙碳”目標的主要參與者、推動者,其源網(wǎng)荷儲等關(guān)鍵環(huán)節(jié)正在面臨深刻變革。

傳統(tǒng)電力系統(tǒng)的電源特性決定其有足夠的轉(zhuǎn)動慣量與發(fā)電靈活性,在保持穩(wěn)定性的基礎(chǔ)上能夠?qū)崿F(xiàn)發(fā)電側(cè)緊隨負荷波動變化的“源隨荷動”發(fā)展模式。在新型電力系統(tǒng)構(gòu)建過程中,電源呈現(xiàn)出多能化、多層化、多樣化,風(fēng)電、光伏等新能源占比逐步提升,其波動幅度與頻次增加,大量的不確定性、隨機性造成電網(wǎng)靈活調(diào)節(jié)能力日趨緊張,加之涉及儲能材料及其成本的限制,電能依舊無法大量儲存,進而導(dǎo)致棄電與缺電交互出現(xiàn),因此源荷缺乏良性互動成為“雙碳”背景下能源綠色轉(zhuǎn)型中亟待解決的問題。構(gòu)建以新能源為主體的新型電力系統(tǒng),需從傳統(tǒng)模式下“源隨荷動”的穩(wěn)定電網(wǎng)逐步轉(zhuǎn)變?yōu)椤霸春苫印钡姆菍崟r平衡、集中--分布協(xié)同控制的波動電網(wǎng),以適應(yīng)低慣量、弱靈活性的新型電力系統(tǒng)發(fā)電特性。

新能源的接入對電力系統(tǒng)調(diào)度計劃的制定提出了新的挑戰(zhàn),面對新型電力系統(tǒng)背景下發(fā)電側(cè)靈活性受限問題,要保障系統(tǒng)的穩(wěn)定運行,用戶側(cè)必須深度參與系統(tǒng)運行的調(diào)節(jié),多時間尺度、高精度的電力負荷建模、預(yù)測以及優(yōu)化對新型電力系統(tǒng)的運行、維護和規(guī)劃至關(guān)重要。

1電力系統(tǒng)負荷預(yù)測場景

首隨著電網(wǎng)需求側(cè)管理的日益普及與負荷調(diào)控的日趨深入,電力用戶不再同過去一樣僅僅作為被動的電力需求者,傳統(tǒng)剛性負荷的特性逐漸轉(zhuǎn)變,取而代之的柔性負荷成為電網(wǎng)負荷調(diào)控的重點對象。電力市場改革促使多種角色場景應(yīng)運而生,負荷預(yù)測應(yīng)用場景逐步多樣化、層次化,合理分析負荷場景典型特征并為之選取精準預(yù)測模型成為當今電力產(chǎn)業(yè)發(fā)展的重要課題。不同負荷預(yù)測場景總結(jié)歸納如下:

1.1區(qū)域級負荷預(yù)測

負荷特性分析工作是電力系統(tǒng)負荷預(yù)測的重要前提,了解并掌握預(yù)測供電區(qū)域內(nèi)的負荷特性變化有助于地區(qū)電網(wǎng)合理規(guī)劃及優(yōu)化調(diào)度。地區(qū)電網(wǎng)的區(qū)域級負荷特性分析與預(yù)測是我國負荷研究工作的重心。

以分區(qū)域分時段負荷曲線為研究對象,綜合分析天氣情況、社會經(jīng)濟發(fā)展態(tài)勢、節(jié)假日等外部因素對于區(qū)域級負荷的影響,通過三次樣條插值、影響因子賦值等計算方法將非量化因素轉(zhuǎn)化為預(yù)測模型可以識別的數(shù)學(xué)量,挖掘負荷內(nèi)在變化規(guī)律與外部影響因素間的非線性關(guān)系與復(fù)雜協(xié)同作用,細化分析區(qū)域級負荷特性并總結(jié)其發(fā)展變化態(tài)勢?;谪摵商匦苑治觯瑓^(qū)域級負荷預(yù)測模型需將高維負荷數(shù)據(jù)通過算法分析訓(xùn)練及模型交互融合,充分挖掘數(shù)據(jù)間的潛在關(guān)聯(lián),進而得到精度相對較高的預(yù)測結(jié)果。

區(qū)域級負荷預(yù)測模型評價體系一般以相對誤差、平均相對誤差、均方根誤差為基準,通過數(shù)值比較進行模型預(yù)測效果判斷。具體指標計算方法如下:

  1. 相對誤差

  2. 平均相對誤差

  3. 均方根誤差

式中,pk代表第k個負荷采樣點的預(yù)測值,yk代表第k個負荷采樣點的實際值,n為短期負荷預(yù)測每日預(yù)測點的個數(shù)。

1.2母線負荷預(yù)測

作為系統(tǒng)區(qū)域級負荷的底層分布組成部分,母線負荷通常為由變電站的主變壓器共給的終端負荷總和,其預(yù)測精度對于電網(wǎng)負荷調(diào)控、優(yōu)化調(diào)度及精益化運行決策有著重要影響。與區(qū)域級宏觀負荷特性不同,由于受供電區(qū)域內(nèi)用戶自身用電行為影響,母線負荷的負荷慣性較小,規(guī)律性較差,因此需要長時間尺度的海量歷史負荷數(shù)據(jù)支撐預(yù)測模型的構(gòu)建。

母線負荷預(yù)測方法一般以聚類、擬合等數(shù)理統(tǒng)計算法為理論基礎(chǔ),考慮到非線性特征及波動性明顯,需采用人工智能算法構(gòu)建預(yù)測模型。

利用Kears深度學(xué)習(xí)框架調(diào)整網(wǎng)絡(luò)結(jié)構(gòu),避免了相似日等相關(guān)特征變量選取問題,實現(xiàn)了高精度自適應(yīng)變電站負荷預(yù)測。

母線負荷預(yù)測模型性能評估具有其獨立的評估度量體系,通常按照以下的母線負荷預(yù)測準確率RT為基準進行預(yù)測結(jié)果精度評價:

(4)

(5)

(6)

式中,RT代表當日母線負荷預(yù)測準確率,σK為時段t所有母線誤差的均方根,en,t為單母線誤差。

1.3居民住宅負荷預(yù)測

對于城市用電負荷而言,用戶側(cè)的居民住宅負荷占比較大,其主觀性的差異與用電電器的多樣性對城市電網(wǎng)運行時的應(yīng)變能力與穩(wěn)定性提出了較大的挑戰(zhàn)。考慮到居民住宅具有集群效應(yīng),且獨立用戶間的家用電器種類與用電習(xí)慣不盡相同,一般依據(jù)自上而下的負荷預(yù)測思想,利用相關(guān)聚類算法對海量居民住宅負荷數(shù)據(jù)進行聚類劃分后再建立差異化預(yù)測模型,避免海量數(shù)據(jù)預(yù)測效率較低的問題。

作為需求響應(yīng)重要參與者,電力用戶的住宅樓宇中擁有大量以可平移、可中斷負荷形式存在的可調(diào)度需求響應(yīng)資源,其參與電力系統(tǒng)削峰填谷的潛力巨大,居民住宅樓宇負荷分布如圖1所示。通過對用戶可調(diào)節(jié)負荷曲線精確預(yù)測,電力公司及負荷聚合商能夠分析評估用電負荷需求響應(yīng)潛力,通過分時電價引導(dǎo)用戶參與需求響應(yīng)。

7237a6f66a0dcb0c13fc197cb1215ec

圖1 居民住宅樓宇負荷分布

考慮到電力市場改革與綠色電力蓬勃發(fā)展,充分考慮用戶差異化的用電習(xí)慣、消費心理及當今電熱氣耦合模式,構(gòu)建基于需求響應(yīng)信號的LSTM超短期負荷預(yù)測模型,驗證了此模型對于計及需求響應(yīng)信號情況下的明顯優(yōu)勢。

以需求響應(yīng)為前提進行負荷預(yù)測并建立分布式電源與智能家電之間的新型供需互動模型,對未來智能電網(wǎng)的建設(shè)規(guī)劃、深入挖掘用戶側(cè)參與需求響應(yīng)的潛力、建立切實可行的新型源--荷互動模型、保障用電高峰期電網(wǎng)的安全高效運行等具有重要的理論和實踐意義。

1.4低壓配電臺區(qū)負荷預(yù)測

低壓配電臺區(qū)主要為 35kV或 10kV配電變壓器供電范圍內(nèi)的所有用戶集合,其數(shù)量取決于配電變壓器臺數(shù)及其配電范圍。典型低壓配電臺區(qū)負荷由同一配電臺區(qū)內(nèi)的居民用戶負荷、工業(yè)負荷及商業(yè)負荷組成,一般而言,同一配電所內(nèi)包含多個配電臺區(qū),臺區(qū)負荷數(shù)量僅次于前文所述的用戶住宅負荷。配電臺區(qū)負荷預(yù)測旨在根據(jù)精準的預(yù)測結(jié)果指導(dǎo)相關(guān)配網(wǎng)工作、獲取配電變壓器裕度指標,進一步合理化安排檢修計劃,為實現(xiàn)事前預(yù)警、調(diào)配搶修資源奠定堅實基礎(chǔ),為提高臺區(qū)供電可靠性與運行經(jīng)濟型提供保障。

選取同一區(qū)域內(nèi)的三個低壓配電臺區(qū)數(shù)據(jù),利用經(jīng)細菌趨化算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)進行負荷數(shù)據(jù)預(yù)測,結(jié)合負荷狀態(tài)結(jié)果進行臺區(qū)內(nèi)低壓變壓器負荷率、容載比等裕度指標分析,綜合損耗及負荷預(yù)測數(shù)據(jù)得出配電變壓器經(jīng)濟運行方式。在LSTM模型基礎(chǔ)上添加循環(huán)跳躍 組件與線性自回歸組件,構(gòu)建具有捕獲配電臺區(qū)負荷短期局部依賴關(guān)系能力的LSTNet預(yù)測模型,通過訓(xùn)練某小區(qū)一公共變壓器的負荷數(shù)據(jù),表明 LSTNet 模型在臺區(qū)負荷變化呈現(xiàn)強烈波動時能夠較好地捕捉其變化趨勢,緩解了傳統(tǒng)神經(jīng)網(wǎng)絡(luò)對負荷數(shù)據(jù)不敏感的問題。

由于配電臺區(qū)具有較為明顯的用電差異性,其負荷規(guī)律有較強隨機性,單一預(yù)測模型的預(yù)測誤差較大,多數(shù)負荷預(yù)測模型難以投入實際應(yīng)用。

1.5綜合能源系統(tǒng)負荷預(yù)測

作為能源互聯(lián)網(wǎng)的物理載體,綜合能源系統(tǒng) (Integrated Energy System ,IES)集成多種形式的能量供應(yīng)、轉(zhuǎn)換和儲存設(shè)備,實現(xiàn)不同類型能源在 源、網(wǎng)、荷、儲等環(huán)節(jié)的耦合,促成多個能源系統(tǒng)間的互動互聯(lián)與協(xié)同運行。

由于多類能源間的物理特性差異及耦合效應(yīng)的必然存在,綜合能源系統(tǒng)存在明顯的負荷隨機波動性,其負荷預(yù)測準確性大大影響系統(tǒng)優(yōu)化調(diào)度與協(xié)調(diào)規(guī)劃。綜合能源系統(tǒng)負荷預(yù)測框架如圖2所示。

f0b48d3686a7c02c0eed54973cf9879

圖2 綜合能源系統(tǒng)負荷預(yù)測框架

由從用戶級綜合能源系統(tǒng)入手,考慮到用戶級存在負荷類型多、規(guī)模小、波動大等特性,作者結(jié)合多通道卷積神經(jīng)網(wǎng)絡(luò)與長短期記憶循神經(jīng)網(wǎng)絡(luò)構(gòu)建 MCNN-LSTM 負荷預(yù)測模型,通過對電、熱、氣、冷等多個用戶級基本負荷單元進行圖像特征重構(gòu)及融合,更好地挖掘各類型負荷間的潛在關(guān)系,避免混合型負荷造成的模型預(yù)測結(jié)果混雜影響, 同時組合神經(jīng)網(wǎng)絡(luò)的應(yīng)用大大提高了預(yù)測精度。通過標簽劃分方法將負荷類型及其影響因素分別歸納至靜態(tài)標簽與動態(tài)標簽,充分分析多元負荷間的相關(guān)性與變化趨勢構(gòu)建 CNN-LSTM負荷預(yù)測模型,依據(jù)標簽內(nèi)容針對性進行差異性預(yù)測,通過利用由電、熱、氣三類能源組成的區(qū)域級綜合能源系統(tǒng)真實負荷數(shù)據(jù)進行訓(xùn)練,此模型能夠較準確地預(yù)測三種能源耦合后的各自獨立負荷情況,預(yù)測精度較高。

2基于智能算法的負荷預(yù)測模型

負荷預(yù)測發(fā)展初期主要以數(shù)學(xué)算法理論為建模基礎(chǔ),傳統(tǒng)負荷預(yù)測將電力負荷數(shù)據(jù)看作時間序列數(shù)據(jù)加以處理,預(yù)測方法主要包括時間序列法、回歸分析法、灰色預(yù)測法、卡爾曼濾波法等。當今發(fā)展態(tài)勢下,電力負荷種類、數(shù)量及其外部影響因素不斷增多,加之新能源發(fā)電占比增加帶來的負荷端主動性荷被動不確定性增強,傳統(tǒng)負荷預(yù)測模型難以滿足新型電力系統(tǒng)的高要求。人工智能技術(shù)憑借其非線性擬合等能力,在負荷建模及預(yù)測、負荷優(yōu)化等方面取得突破,基于人工智能技術(shù)的智能算法模型能夠較好捕捉當今電力負荷的非線性特征,大大提高了負荷預(yù)測精度,成為當今負荷預(yù)測的主流模型。

2.1 單一預(yù)測模型

2.1.1 BP神經(jīng)網(wǎng)絡(luò)

BP神經(jīng)網(wǎng)絡(luò)一般具有輸入層、隱含層及輸出層三層網(wǎng)絡(luò)結(jié)構(gòu),用于負荷預(yù)測時,歷史負荷及 其影響因素進行數(shù)值量化后作為輸入數(shù)據(jù),在隱含層內(nèi)經(jīng)過激勵函數(shù)的擬合處理,多次循環(huán)、迭代誤差反向傳輸過程,以此減小網(wǎng)絡(luò)訓(xùn)練結(jié)果與已知實際真實值之間的誤差,最終由輸出層得到預(yù)測結(jié)果。BP神經(jīng)網(wǎng)絡(luò)拓撲結(jié)構(gòu)圖如圖3所示。

325f0e8f7e158d852625596aae46fb0

圖3 BP神經(jīng)網(wǎng)絡(luò)拓撲結(jié)構(gòu)

其中wi 、wj 分別代表輸入層與隱含層間的權(quán)重、隱含層與輸出層間的權(quán)重,X代表輸入量,y 代表神經(jīng)網(wǎng)絡(luò)的輸出量,Y代表數(shù)據(jù)真實值,E代表真實值與預(yù)測值之間的差值。

與傳統(tǒng)的算法相比,BP神經(jīng)網(wǎng)絡(luò)具有更好的模型泛化能力與非線性映射能力,其柔性的網(wǎng)絡(luò)結(jié)構(gòu)使之成為應(yīng)用為廣泛的人工神經(jīng)網(wǎng)絡(luò)之一。

傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)具有訓(xùn)練速度慢、易陷入局部極小值、易出現(xiàn)過擬合等缺點,應(yīng)用于負荷預(yù)測時,常通過加入遺傳算法、粒子群優(yōu)化算法等對其網(wǎng)絡(luò)內(nèi)部各層權(quán)值及閾值進行優(yōu)化,有效提高BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練精度與可靠性。

考慮到過多歷史負荷數(shù)據(jù)的輸入將大大增加神經(jīng)網(wǎng)絡(luò)預(yù)測模型的復(fù)雜度,隨機分布式嵌入框架及BP神經(jīng)網(wǎng)絡(luò)的負荷預(yù)測模型,采用核密度估計法擬合多個預(yù)測結(jié)果,通過聚合估計法得出負荷最終預(yù)測值,有效改善數(shù)據(jù)維度對BP神經(jīng)網(wǎng)絡(luò)預(yù)測精度的影響。

2.1.2 傳統(tǒng)循環(huán)神經(jīng)網(wǎng)絡(luò)

BP 神經(jīng)網(wǎng)絡(luò)的三層網(wǎng)絡(luò)結(jié)構(gòu)為全連接,且層間節(jié)點相互無連接,因此難以體現(xiàn)先后輸出數(shù)據(jù)的關(guān)聯(lián)關(guān)系。循環(huán)神經(jīng)網(wǎng)絡(luò)( Recurrent Neural Network ,RNN)在BP神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)上,為隱含層各節(jié)點提供前序連接與后序連接,用以記錄前序信息并將其應(yīng)用于后序輸出計算中。RNN 網(wǎng)絡(luò)拓撲結(jié)構(gòu)圖如圖 4 所示。

e3637e93bbb736f9f3a88dfe740f71e

圖 4 RNN 網(wǎng)絡(luò)拓撲結(jié)構(gòu)

考慮到RNN隱含層的基本循環(huán)體單元較多, 對多個循環(huán)體單元的權(quán)值進行 Xaier 初始化, 以保證初始權(quán)值的可靠性,進而利用隨機梯度下降算法優(yōu)化的多尺度循環(huán)神經(jīng)網(wǎng)絡(luò)RNN進行短期負荷預(yù)測。通過具有自適應(yīng)能力的指數(shù)加權(quán) 平均調(diào)整方案進行數(shù)據(jù)插值,以減少量測數(shù)據(jù)準 確性對 RNN 模型負荷預(yù)測結(jié)果的影響。

由于RNN具有短時記憶特性,難以保證時間跨度較大的負荷序列信息傳遞的準確性。同時隨 著多層循環(huán)訓(xùn)練, 內(nèi)部梯度不斷減小,RNN 容易出現(xiàn)梯度消失和梯度爆炸等問題,因此 RNN 并不適用于長時間序列訓(xùn)練。

2.1.3 長短期記憶神經(jīng)網(wǎng)絡(luò)

傳統(tǒng)循環(huán)神經(jīng)網(wǎng)絡(luò)的內(nèi)部循環(huán)單元結(jié)構(gòu)無法 傳遞前序特征信號與后序特征信號的函數(shù)關(guān)系, 為此基于循環(huán)神經(jīng)網(wǎng)絡(luò)改進所得長短期記憶神經(jīng) 網(wǎng)絡(luò)(Long Short-Term Memory ,LSTM),其網(wǎng)絡(luò)拓撲結(jié)構(gòu)如圖5所示。

LSTM 保留了RNN基本結(jié)構(gòu)中相鄰時間節(jié)點的隱含層傳遞關(guān)系,在循環(huán)體內(nèi)部更新加入遺忘 門、輸入門和輸出門,對前序信息進行記憶、提取并篩選,進一步增強后續(xù)特征信號與前序特征信號間的關(guān)聯(lián)程度,有效解決傳統(tǒng) RNN在長時間序列訓(xùn)練時出現(xiàn)的梯度消失與梯度爆炸問題。

cc28c2a296fc53e7661078bc72ce735

圖 5 LSTM網(wǎng)絡(luò)拓撲結(jié)構(gòu)

LSTM保為充分發(fā)揮LSTM在處理長時間序列大數(shù)據(jù)集時性能較好的顯著優(yōu)勢,利用互補集合經(jīng)驗?zāi)B(tài)分解將電力負荷分解為不同頻率的分量,其中建立經(jīng)貝葉斯優(yōu)化的LSTM預(yù)測模型對復(fù)雜高頻分量進行預(yù)測,進一步提高波動大、規(guī)律性差的負荷高頻分量的預(yù)測精度?;诨バ畔⒗碚搶λx取的電力負荷進行最大相關(guān)最小冗余特征變量選擇(mRMR),以此擇出輸入變量集合,并通過 LSTM 進行用戶日前電力負荷預(yù)測。結(jié)果表明,mRMR-LSTM 模型能夠更好地處理波動較大、隨機性較強的用戶電力負荷序列。

2.1.4 門控循環(huán)單元

門控循環(huán)單元(Gated Recurrent Unit ,GRU)為長短期記憶神經(jīng)網(wǎng)絡(luò)單元的簡化變體,其將LSTM循環(huán)體內(nèi)部的遺忘門與輸入門合并為更新門,將輸出門替換為重置門,有效對前序信息進行記憶或遺忘,可以同時兼顧電力負荷序列的時序性與非線性,大大減少了參數(shù)數(shù)量,降低了網(wǎng)絡(luò)訓(xùn)練難度。

b4d375df7f84e8cd3ff74accd40a898

圖 6 GRU 網(wǎng)絡(luò)拓撲結(jié)構(gòu)

考慮到單一的GRU網(wǎng)絡(luò)在處理非連續(xù)性長時間序列時難以對序列特征做差異化區(qū)分,利用譜聚類算法對用電負荷進行聚類劃分,通過模型融合算法動態(tài)調(diào)節(jié)多種GRU模型在整體預(yù)測模 型中的權(quán)重,動態(tài)融合淺層、深層及多層疊加的各類 GRU網(wǎng)絡(luò),提高聚類劃分下GRU預(yù)測模型 的預(yù)測精度與泛化能力。

為減少單一GRU模型存在的長時間序列信息丟失問題,在GRU負荷預(yù)測模型中加入 注意力(Attention)機制模塊,提高對負荷序列關(guān) 鍵特征的捕捉能力,進一步減小負荷序列長度對 預(yù)測精度的影響。對歷史電力負荷進行經(jīng)驗?zāi)B(tài)分解,構(gòu)建EMD- GRU-Attention 混合預(yù)測模型,較好地捕捉了負荷數(shù)據(jù)的時序性與復(fù)雜非線性關(guān)系。 此外,GRU- Attention 預(yù)測模型也較為廣泛地應(yīng)用于具有強耦合性質(zhì)的綜合能源系統(tǒng)冷、熱、電負荷的預(yù)測中,借助多任務(wù)學(xué)習(xí)中的權(quán)重共享機制提取不同類型負荷間的耦合信息,進一步提高大波動下單一負荷預(yù)測精度。

2.1.5 卷積神經(jīng)網(wǎng)絡(luò)

考慮到循環(huán)神經(jīng)網(wǎng)絡(luò)無法提取序列的空間特征,研究學(xué)者提出依靠卷積神經(jīng)網(wǎng)絡(luò)模型提取序列的時間特征與空間特征。卷積神經(jīng)網(wǎng)絡(luò)(Convolution Neural Networks ,CNN)在 BP 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)基礎(chǔ)上將隱含層替換為卷積層與池化層, 高維電力負荷相關(guān)數(shù)據(jù)進行預(yù)處理后經(jīng)輸入層輸入網(wǎng)絡(luò)模型,經(jīng)卷積層的卷積計算提取不同數(shù)據(jù)間的關(guān)聯(lián)特征,經(jīng)池化層池化后實現(xiàn)特征值篩選與降維,從而減少系統(tǒng)需要優(yōu)化的參數(shù)數(shù)量, 降低了人為提取特征帶來的預(yù)測誤差。CNN網(wǎng)絡(luò)拓撲圖如圖7所示。

2eef0ff7c912ffa74ff8db37ee5762e

圖 7 CNN 網(wǎng)絡(luò)拓撲結(jié)構(gòu)

傳統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)具有較強的非線性映射能 力及圖像特征提取能力,用于負荷預(yù)測時可將負荷數(shù)據(jù)及相關(guān)影響因素進行圖像化排列,充分發(fā)揮CNN在網(wǎng)絡(luò)訓(xùn)練中的自學(xué)習(xí)、自適應(yīng)優(yōu)勢, 通過提取圖像數(shù)據(jù)關(guān)鍵特征來減小CNN處理序列數(shù)據(jù)時出現(xiàn)的過擬合問題。

卷積時間網(wǎng)絡(luò)在處理長時間序列時常存在視 野區(qū)間有限、難以提取全部時序特征等問題, 針對此問題,在傳統(tǒng)CNN基礎(chǔ)上引入擴張卷積、因果卷積及殘差網(wǎng)絡(luò),構(gòu)成具有更強時序特征捕捉能力的時序卷積神經(jīng)網(wǎng)絡(luò)(TCN)負荷預(yù)測模型,通過對小型綜合能源系統(tǒng)負荷數(shù)據(jù)進行分析預(yù)測,驗證了此改進卷積神經(jīng)網(wǎng)絡(luò)模型具有更高特征辨識能力及穩(wěn)定性。

2.1.6 圖神經(jīng)網(wǎng)絡(luò)

圖神經(jīng)網(wǎng)絡(luò)(Graph Neural Networks ,GNN)主要包括圖卷積神經(jīng)網(wǎng)絡(luò)、圖記憶力網(wǎng)絡(luò)等,是一種新興的專門處理圖數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)模型,其具備同時挖掘節(jié)點內(nèi)特征信息與節(jié)點間的相關(guān)性信息的能力,在負荷預(yù)測領(lǐng)域能夠較好地捕捉負荷序列的時間連續(xù)性與空間關(guān)聯(lián)性。利用圖神經(jīng)網(wǎng)絡(luò)進行負荷預(yù)測時,需將歷史負荷數(shù)據(jù)進行預(yù)先聚類處理,利用同族負荷數(shù)據(jù)的時間序列特征與空間關(guān)聯(lián)性特征構(gòu)建局部時空圖,利用圖聚合函數(shù)將自身特征信息與相鄰節(jié)點特征信息進行聚合,將最終信息平均值輸入至神經(jīng)網(wǎng)絡(luò)。神經(jīng)網(wǎng)絡(luò)一般預(yù)測流程如圖8所示。

a6c29194567dac211488ae18e8bd4b6

圖8 圖神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)拓撲結(jié)構(gòu)

利用 K-means 聚類算法將用電集群進行分組,將每組用戶聚合的負荷序列作為節(jié)點特 征,建立面向用戶集群負荷預(yù)測的圖結(jié)構(gòu)數(shù)據(jù),構(gòu)建并訓(xùn)練自適應(yīng)時空同步圖卷積神經(jīng)網(wǎng)絡(luò)模型,充分挖掘居民用電負荷的時空關(guān)聯(lián)性,通過提取圖像特征提高預(yù)測精度,但由于圖神經(jīng)網(wǎng)絡(luò)捕獲時間依賴關(guān)系的能力有限,預(yù)測精度仍有待提升。為進一步提高 GNN的時間特征提取能力,利用圖神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)組合模型進行配電網(wǎng)負荷時空預(yù)測,其中,利用圖卷積網(wǎng)絡(luò)捕獲電力網(wǎng)絡(luò)的拓撲結(jié)構(gòu)、獲得空間依賴性,利用門控遞歸單元捕捉負荷信息的動態(tài)變化、獲取時間依賴性,發(fā)揮兩種神經(jīng)網(wǎng)絡(luò)自身特性,提高時空兩維負荷預(yù)測的準確性。

2.2 組合預(yù)測模型

一直以來,高穩(wěn)定性和準確度都是負荷預(yù)測模 型訓(xùn)練所追求的目標,但單一的模型算法往往存在自身固有缺陷,僅僅憑借調(diào)整算法內(nèi)部參數(shù)難以減弱甚至消除缺陷所帶來的結(jié)果誤差。當今,以參數(shù)耦合方式、流程組合方式、算法融合方式為基本構(gòu)成的組合模型在負荷預(yù)測領(lǐng)域逐步興起,較好地結(jié)合各個單一負荷預(yù)測模型的自身特長,改善因單一模型自身固有缺陷導(dǎo)致的預(yù)測精度受限問題。

2.2.1 CNN-LSTM 模型

卷積神經(jīng)網(wǎng)絡(luò)可以較好地提取長時間序列的空間特征,但難以準確地提取出序列的時間特征,長短期記憶神經(jīng)網(wǎng)絡(luò)憑借其記憶功能能夠準確提取序列時間特征信息,但自身短時記憶的固有缺陷容易丟失序列信息。因此,單一CNN與LSTM負荷預(yù)測模型在面對多維負荷數(shù)據(jù)序列常出現(xiàn)多維特征信息提取不充分、序列信息結(jié)構(gòu)混亂等問題。

CNN-LSTM 組合模型可由 CNN 層提取序列空間特征,負荷序列經(jīng) CNN 處理后輸入LSTM進行時序特征提取并進行負荷預(yù)測,充分集成 CNN與LSTM 兩類神經(jīng)網(wǎng)絡(luò)模型的固有優(yōu)勢,有效減少單一模型在預(yù)測方面體現(xiàn)出的序列丟失、時序特征捕獲等問題。CNN-LSTM 模型網(wǎng)絡(luò)拓撲結(jié)構(gòu)如圖9所示。

8c9e2d29fad7c65573a59f9e89698d2

圖9 CNN-LSTM 模型網(wǎng)絡(luò)拓撲結(jié)構(gòu)

CNN-LSTM 預(yù)測模型在綜合能源系統(tǒng)負荷預(yù)測、居民住宅負荷預(yù)測等方面應(yīng)用廣泛,其較強的時空特征捕捉特性能夠差異化跟蹤綜合能源系統(tǒng)及居民住宅內(nèi)各類負荷變化情況,有效提高具有耦合性質(zhì)的獨立負荷預(yù)測精度。進一步研究了居民住宅內(nèi)家用電器的能耗情況,通過對電熱水器與變頻空調(diào)的能耗監(jiān)測與預(yù)測,表明 CNN-LSTM 組合模型可以 很好地預(yù)測住宅內(nèi)能耗占比較大的家用電器使用情況。

在系統(tǒng)區(qū)域級負荷預(yù)測方面,運用 CNN 充分提取各分量的潛在特征并作為 LSTM 網(wǎng)絡(luò)輸入對各分量進行預(yù)測,明顯縮短負荷預(yù)測時間,有效提升負荷預(yù)測精度。由于傳統(tǒng) CNN- LSTM 模型只在結(jié)構(gòu)上實現(xiàn)兩個單體網(wǎng)絡(luò)的順序鏈接,為進一步提高訓(xùn)練性能,在整體結(jié)構(gòu)上,可引入時序注意力機制及通道注意力機制來強化負荷序列特征提取能力;在單一網(wǎng)絡(luò)上,可建立具有雙向遞歸反饋的雙向長短期記憶循環(huán)網(wǎng)絡(luò) BiLSTM,利用給 L1正則化對特征數(shù)據(jù)進行特征篩選后通過CNN-BiLSTM模型進行負荷預(yù)測,進一步增強模型預(yù)測性能。

2.2.2 CNN-GRU 模型

門控循環(huán)單元GRU簡化了LSTM的內(nèi)部單元結(jié)構(gòu),在保證較高預(yù)測精度的同時可有效縮短模型的訓(xùn)練時間,因此更適用于負荷預(yù)測領(lǐng)域。使用GRU網(wǎng)絡(luò)雖然可以考慮時序性數(shù)據(jù)的歷史規(guī)律,但是需人工構(gòu)造特征關(guān)系,不能充分挖掘非連續(xù)特征在高維空間中的聯(lián)系,因此考慮結(jié)合其他網(wǎng)絡(luò)以提升對負荷特征的挖掘能力。與CNN-LSTM 模型相比,CNN-GRU 模型結(jié)構(gòu)更為簡單,大大縮減了循環(huán)單元的參數(shù)數(shù)量與網(wǎng)絡(luò)訓(xùn)練時間,進一步增強了時空關(guān)聯(lián)特征提取能力。

對負荷數(shù)據(jù)進行 k-means 聚類劃分后, 采用 CNN 網(wǎng)絡(luò)提取特征與負荷因素在高維空間的 聯(lián)系,構(gòu)造時序序列的特征向量并輸入到三層GRU網(wǎng)絡(luò)中,通過訓(xùn)練 GRU 網(wǎng)絡(luò)輸出負荷預(yù)測值, 此模型在保持較快訓(xùn)練速度的同時,具有較高的預(yù)測精度。基礎(chǔ)上引入Attention 機制,通過映射加權(quán)和學(xué)習(xí)參數(shù)矩陣賦予 GRU 隱含狀態(tài)不同的權(quán)重,以此減少序列信息的遺忘丟失,與未加 Attention 機制的預(yù)測模型相比,預(yù)測誤差明顯減小。在 GRU網(wǎng)絡(luò)基礎(chǔ)上建立雙向門控循環(huán)單元BiGRU,對負荷數(shù)據(jù)特征進行特征初篩后,通過經(jīng)貝葉斯算法優(yōu)化的CNN-BiGRU 模型進行預(yù)測,此模型得到的負荷曲線更加平滑,峰谷預(yù)測值及變化趨勢更加接近真實值,預(yù)測精度較高。

2.2.3 RNN-ResNet 模型

高維的電力系統(tǒng)負荷數(shù)據(jù)通常需要結(jié)構(gòu)復(fù)雜、層數(shù)較多的神經(jīng)網(wǎng)絡(luò)進行訓(xùn)練,以此提高負荷特征提取的完整性與預(yù)測結(jié)果的準確性。由于神經(jīng)網(wǎng)絡(luò)層數(shù)疊加及多種神經(jīng)網(wǎng)絡(luò)耦合互聯(lián),面對高維度海量數(shù)據(jù)時模型訓(xùn)練速度較慢,且當訓(xùn)練達到一定次數(shù)與深度時,卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)等將出現(xiàn)精度飽和甚至下降的“模型退化現(xiàn)象”。深度殘差網(wǎng)絡(luò)(Residual Network ,ResNet)由多個殘差塊堆疊而成,其內(nèi)部的殘差塊結(jié)構(gòu)不會增加網(wǎng)絡(luò)模型參數(shù)數(shù)量與計算復(fù)雜度,可以有效緩解其他神經(jīng)網(wǎng)絡(luò)的訓(xùn)練速度慢及模型退化問題, 因此深度殘差網(wǎng)絡(luò)已被用于組合神經(jīng)網(wǎng)絡(luò)負荷預(yù)測模型中配合其他循環(huán)神經(jīng)網(wǎng)絡(luò)進行數(shù)據(jù)訓(xùn)練,其組合模型網(wǎng)絡(luò)拓撲結(jié)構(gòu)如圖10所示。

68697bd79d10d88d0edb9e96da9f0fe

圖 10 RNN-ResNet 模型網(wǎng)絡(luò)拓撲結(jié)構(gòu)

綜合上述分析,經(jīng)過長時間的發(fā)展,電力系統(tǒng)短期負荷預(yù)測技術(shù)更加趨于智能化,預(yù)測模型越發(fā)復(fù)雜,預(yù)測精度隨之不斷提高。雖然已經(jīng)存在較為成熟的短期負荷預(yù)測理論,但隨著新型電力系統(tǒng)的發(fā)展,傳統(tǒng)的負荷預(yù)測理論已難以滿足當前環(huán)境下對于負荷預(yù)測的要求,提出預(yù)測精度 更高、預(yù)測過程更穩(wěn)定、泛化能力更強的電力系統(tǒng)短期負荷預(yù)測模型仍為當前的重要研究方向。

3安科瑞光儲充一體化方案

安科瑞為新能源工程包括分布式光伏、儲能、充電站提供軟硬件一體化解決方案,圖11為一個包含分布式光伏、儲能、汽車充電站和傳統(tǒng)用電負荷組成的新型10kV配電網(wǎng),由10kV開閉所、10kV并網(wǎng)分布式光伏系統(tǒng)、10kV并網(wǎng)儲能系統(tǒng)、電動汽車充電站以及其它負荷組成。

ee22779e84bd976d04813d2ededc408

圖11 安科瑞分布式光伏、儲能、充電樁的10kV配電系統(tǒng)

e769105fdc0eacc824b3a2d8e63d7f3

圖12 分布式光伏電站綜合自動化系統(tǒng)結(jié)構(gòu)

光伏監(jiān)控系統(tǒng)需要使用相關(guān)保護、測控、穩(wěn)控、分析及數(shù)據(jù)安全和通訊設(shè)備,典型的分布式光伏電站并網(wǎng)系統(tǒng)需要用到的二次設(shè)備如下表所示。

設(shè)備名稱

圖片

型號

功能

安全自動裝置屏

AM5SE

AM5SE-IS防孤島/防逆流保護裝置

安裝在并網(wǎng)柜,當外部電網(wǎng)停電后跳開并網(wǎng)斷路器,斷開分布式電源和電網(wǎng)連接;當安裝在公共連接點時具備防逆流監(jiān)測和保護功能

APView500

APView500PV電能質(zhì)量在線監(jiān)測裝置

安裝在并網(wǎng)柜,對光伏發(fā)電側(cè)側(cè)電能質(zhì)量進行監(jiān)測,主要包括:電壓偏差、頻率偏差、2-63次諧波、0.2-62.5次間諧波、直流分量、電壓波動、電壓閃變等穩(wěn)態(tài)數(shù)據(jù);電壓暫降、電壓暫升、短時中斷。

AM6

AM6-FE頻率電壓緊急控制裝置

實現(xiàn)低周減載、低頻解列、過負荷聯(lián)切等功能,保障電網(wǎng)穩(wěn)定。

遠動通訊屏

/

多合一數(shù)據(jù)加密采集裝置

提供AGC/AVC、數(shù)據(jù)采集、數(shù)據(jù)加密、遠動及無線通訊,與調(diào)度進行數(shù)據(jù)對接

ANet-4E16S

ANet-4E16S遠動裝置

數(shù)據(jù)通過104協(xié)議上傳調(diào)度

/

以太網(wǎng)交換機

本地數(shù)據(jù)的通訊組網(wǎng)

/

北斗對時時鐘

按照用戶輸出符合規(guī)約的信息格式,完成同步授時服務(wù)

分散安裝

保護測控裝置

AM5SE

AM5SE-C SVG保護裝置

具有兩段式定時限過流保護,反時限保護,欠電壓保護,過電壓保護等功能對電容器進行保護

AM5SE-F線路保護測控裝置

具有三段式過流保護,重合閘,過負荷告警、跳閘,過電壓告警、跳閘等功能對線路進行保護

AM5SE-T升壓變保護測控裝置

具有三段式過流保護,兩段零序過流保護,過負荷保護,高溫超溫保護,瓦斯保護等保護功能































Acrel-2000MG微電網(wǎng)能量管理系統(tǒng)具有完善的電池管理功能和豐富的外部通信接口,可實現(xiàn)對儲能系統(tǒng)、充電系統(tǒng)、光伏系統(tǒng)等智能設(shè)備的運行信息實時監(jiān)控,包括對儲能系統(tǒng)內(nèi)電壓、電流、溫度、壓力、流量等信息采集、實時監(jiān)視、優(yōu)化管理、智能維護及信息查詢功能。具備新能源消納、峰谷套利、防逆流、需量控制、柔性擴容、限電模式等多種控制策略,保障儲能系統(tǒng)安全穩(wěn)定、智能運行。

設(shè)備名稱

圖片

型號

功能

防孤島/防逆流保護裝置

AM6

AM5SE-IS防孤島/防逆流保護裝置

安裝在并網(wǎng)柜,當外部電網(wǎng)停電后跳開并網(wǎng)斷路器,斷開分布式電源和電網(wǎng)連接;當安裝在公共連接點時具備防逆流監(jiān)測和保護功能

電能質(zhì)量監(jiān)測裝置

APVIEW400

APView400電能質(zhì)量監(jiān)測裝置

對并網(wǎng)柜電能質(zhì)量進行監(jiān)測,主要包括:電壓偏差、頻率偏差、2-63次諧波、0.2-62.5次間諧波、電壓波動、電壓閃變等穩(wěn)態(tài)數(shù)據(jù);直流分量、短時中斷;電壓瞬態(tài)、電流瞬態(tài)。

智能儀表

APM520

APM520

具有全電量測量,諧波畸變率、電壓合格率統(tǒng)計、分時電能統(tǒng)計,開關(guān)量輸入輸出,模擬量輸入輸出。

直流電能表

9fbbfe2d333dbef8e77f2a7d0897ac5

DJSF1352-RN

可測量直流系統(tǒng)中的電壓、電流、功率以及正反向電能等,配套霍爾傳感器(可選)。

霍爾傳感器

霍爾(1)

AHKC-EKA

測量DC0~(5-500)A電流,輸出DC4-20mA,工作電源DC12/24V。

直流絕緣監(jiān)測

AIM-D100

AIM-D100-TH

監(jiān)測直流系統(tǒng)絕緣狀況

智能網(wǎng)關(guān)

anet(2)

ANet-2E4SM

邊緣計算網(wǎng)關(guān),嵌入式linux系統(tǒng),網(wǎng)絡(luò)通訊方式具備Socket方式,支持XML格式壓縮上傳,提供AES加密及MD5身份認證等安全需求,支持斷點續(xù)傳,支持Modbus、ModbusTCP、DL/T645-1997、DL/T645-2007、101、103、104協(xié)議

儲能控制單元

ANet-2E8S1

ANet-ESCU

適用于儲能一體柜(箱)的EMS裝置,可用于磷酸鐵鋰電池、全釩液流電池等儲能本體,對接電池管理系統(tǒng)(BMS)、儲能逆變器(PCS)、電量計量、動力環(huán)境、消防儲能柜內(nèi)數(shù)據(jù)的統(tǒng)一采集、存儲。其具備監(jiān)視控制、能量協(xié)調(diào)、聯(lián)動保護、經(jīng)濟優(yōu)化增效等功能。

協(xié)調(diào)控制器

672793be59467e758bfdf735afcb362

ACCU-100

具備智能網(wǎng)關(guān)數(shù)據(jù)采集、協(xié)議轉(zhuǎn)換、存儲等功能之外,還具備新能源的使用策略控制功能,可以按照預(yù)設(shè)的邏輯控制光伏出力、儲能充/放電、充電樁充電控制以及負荷調(diào)節(jié)等功能,并與云端平臺進行交互,響應(yīng)云端策略配置。

儲能柜能量

管理系統(tǒng)

Acrel-2000ES

針對0.4kV分布式儲能柜的能量管理,包括充放電策略控制、運行狀態(tài)監(jiān)測、電池信息管理以及故障報警。

微電網(wǎng)能量

管理系統(tǒng)

Acrel-2000MG

對企業(yè)微電網(wǎng)的源(市電、分布式光伏、微型風(fēng)機)、網(wǎng)(企業(yè)內(nèi)部配電網(wǎng))、荷(固定負荷和可調(diào)負荷)、儲能系統(tǒng)、新能源汽車充電負荷進行有序管理和優(yōu)化控制,實現(xiàn)不同目標下源網(wǎng)荷儲資源之間的靈活互動,增加多策略控制下系統(tǒng)的穩(wěn)定運行。














































4結(jié)束語

綜上所述,隨著新型電力系統(tǒng)穩(wěn)步發(fā)展與負荷預(yù)測技術(shù)日益先進,面對當今負荷預(yù)測研究面對的問題與挑戰(zhàn),需著力推進負荷預(yù)測模型綜合化、精準化發(fā)展,高效提升以人工智能為基礎(chǔ)的預(yù)測模型泛化能力與自調(diào)節(jié)能力。同時,在保證負荷預(yù)測精準度前提下開展柔性可控負荷參與電網(wǎng)優(yōu)化調(diào)度方面的研究也在逐步展開,綜合考慮多指標下的可控負荷響應(yīng)與互動潛力,構(gòu)建負荷可調(diào)潛力評估指標體系與可控負荷預(yù)測模型,為電網(wǎng)開展需求響應(yīng)潛力分析及調(diào)峰調(diào)度工作提供參考性建議與合理化策略,緩解用電高峰時段下的供電壓力,逐步實現(xiàn)源網(wǎng)荷協(xié)調(diào)、平衡發(fā)展。

免責(zé)聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責(zé),不承擔此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責(zé)任。
  • 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618
黄山市| 忻城县| 南平市| 车致| 海淀区| 泸西县| 吉隆县| 隆安县| 孙吴县| 定结县| 呼伦贝尔市| 射阳县| 江津市| 托克托县| 郁南县| 元朗区| 泽普县| 南郑县| 额敏县| 贡山| 灵石县| 闻喜县| 乐亭县| 拜泉县| 敖汉旗| 军事| 瑞丽市| 富阳市| 禄劝| 城固县| 敦煌市| 丹寨县| 平南县| 乐陵市| 长垣县| 集贤县| 陇西县| 盐城市| 丰台区| 孝昌县| 兴海县|