Overview of Western Blotting
The term "blotting" refers to the transfer of biological samples from a gel to a membrane and their subsequent detection on the surface of the membrane. Western blotting (also called immunoblotting because an antibody is used to specifically detect its antigen) was introduced by Towbin, et al. in 1979 and is now a routine technique for protein analysis. The specificity of the antibody-antigen interaction enables a target protein to be identified in the midst of a complex protein mixture. Western blotting can produce qualitative and semiquantitative data about that protein.
Introduction
The first step in a Western blotting procedure is to separate the macromolecules using gel electrophoresis. After electrophoresis, the separated molecules are transferred or blotted onto a second matrix, generally a nitrocellulose or polyvinylidene difluoride (PVDF) membrane. Next, the membrane is blocked to prevent any nonspecific binding of antibodies to the surface of the membrane. Most commonly, the transferred protein is complexed with an enzyme-labeled antibody as a probe. An appropriate substrate is then added to the enzyme and together they produce a detectable product such as a chromogenic precipitate on the membrane for colorimetric detection. The most sensitive detection methods use a chemiluminescent substrate that, when combined with the enzyme, produces light as a byproduct. The light output can be captured using film, a CCD camera or a phosphorimager that is designed for chemiluminescent detection. Alternatively, fluorescently tagged antibodies can be used, which are directly detected with the aid of a fluorescence imaging system. Whatever system is used, the intensity of the signal should correlate with the abundance of the antigen on the membrane.
Detailed procedures for detection of a Western blot vary widely. One common variation involves direct vs. indirect detection. With the direct detection method, the primary antibody that is used to detect an antigen on the blot is labeled with an enzyme or fluorescent dye. This detection method is not widely used as most researchers prefer the indirect detection method for a variety of reasons. In the indirect detection method, a primary antibody is added first to bind to the antigen. This is followed by a labeled secondary antibody that is directed against the primary antibody. Labels include biotin, fluorescent probes such as fluorescein or rhodamine, and enzyme conjugates such as horseradish peroxidase or alkaline phosphatase. The indirect method offers many advantages over the direct method.
免疫印跡與檢測技術(shù)指南相關(guān)產(chǎn)品:
發(fā)光底物HRP(ECL發(fā)光液)50ml*2 | 密理博WBKLS0100現(xiàn)貨 |
發(fā)光底物HRP(ECL發(fā)光液)250ml*2 | 密理博WBKLS0500現(xiàn)貨 |
Pierce ECL免疫印跡底物 | 皮爾斯32106現(xiàn)貨 |
增強型化學(xué)發(fā)光(ECL)HRP底物 | 皮爾斯34080現(xiàn)貨 |
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。